Accurate relativistic adapted Gaussian basis sets for Cesium through Radon without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models

Accurate relativistic adapted Gaussian basis sets (RAGBSs) from Cs (Z = 55) through Rn (Z = 86) without variational prolapse were developed by using the polynomial version of the Generator Coordinate Dirac‐Fock method. The RAGBSs presented here can be used with any of two popular finite nucleus models, the uniform sphere and the Gaussian models. The largest RAGBS error is 4.5 mHartree for Radon with a size of 30s27p17d11f. © 2006 Wiley Periodicals, Inc. J Comput Chem, 2006

[1]  K. Fægri Relativistic Gaussian basis sets for the elements K – Uuo , 2001 .

[2]  Talman Minimax principle for the Dirac equation. , 1986, Physical review letters.

[3]  F. E. Jorge,et al.  On the inclusion of the Breit interaction term in the closed‐shell generator coordinate Dirac–Fock formalism , 1996 .

[4]  Richard E. Stanton,et al.  Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations , 1984 .

[5]  Roberto L. A. Haiduke,et al.  An accurate relativistic universal Gaussian basis set for hydrogen through Nobelium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models , 2005, J. Comput. Chem..

[6]  Yoshihiro Watanabe,et al.  Relativistic Gaussian basis sets for molecular calculations: Fully optimized single‐family exponent basis sets for HHg , 2006, J. Comput. Chem..

[7]  G. Soff,et al.  The lamb shift in hydrogen-like atoms, 1 ⩽ Z ⩽ 110 , 1985 .

[8]  Lucas Visscher,et al.  Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions , 1997 .

[9]  O. Matsuoka,et al.  An atomic Dirac–Fock–Roothaan program☆ , 2001 .

[10]  A. D. McLean,et al.  RELATIVISTIC EFFECTS ON RE AND DE IN AGH AND AUH FROM ALL-ELECTRON DIRAC HARTREE-FOCK CALCULATIONS , 1982 .

[11]  H. Tatewaki,et al.  Gaussian-type function set without prolapse 1H through 83Bi for the Dirac-Fock-Roothaan equation. , 2004, The Journal of chemical physics.

[12]  K. Dyall Relativistic and nonrelativistic finite nucleus optimized triple-zeta basis sets for the 4p, 5p and 6p elements , 1998 .

[13]  A. D. Silva,et al.  A polynomial version of the generator coordinate Dirac–Fock method , 2004, J. Comput. Chem..

[14]  Y. Mochizuki,et al.  Prolapses in four-component relativistic Gaussian basis sets , 2003 .

[15]  O. Matsuoka Analytical Dirac-Fock SCF Method for Generalized Average Energy of Configurations , 1982 .

[16]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[17]  O. Matsuoka,et al.  Relativistic Gaussian basis sets for molecular calculations: Cs–Hg , 2001 .

[18]  F. E. Jorge,et al.  A generator coordinate version of the closed‐shell Dirac–Fock equations , 1996 .