Chapter 10 Optical Switches

After a detailed introductory discussion of general concepts, which apply to optical switches regardless of their implementation technology, the following sections cover opto-mechanical switches and liquid crystal technologies for optical switching, including small matrix switches and wavelength selective switches. Planar lightwave circuit (PLC) based optical switch technologies constitute the topic of the next section, and the treatment includes switches in various material systems such as LiNbO3, polymer, silicon-on-insulator (SOI), and switching by means of the electro-opticor thermo-optic effect. The following, major part of the chapter covers MEMS-based switches including 2D and 3D switches, switching matrices and wavelength selective switches as well. The chapter concludes with a brief discussion of piezo-electric actuator-based matrix switches. The description of optical switches includes their fundamentals, including underlying physics, operation principles, and generic implementations, typical characteristics of commercially available devices, and recent developments of switches that are still in the R&D stage. 10.1 General Concepts of Optical Switching

[1]  Joseph E. Ford,et al.  Scaling Limits of MEMS Beam-Steering Switches for Data Center Networks , 2015, Journal of Lightwave Technology.

[2]  G. Cong,et al.  Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. , 2015, Optics express.

[3]  Ken Tanizawa,et al.  Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. , 2015, Optics express.

[4]  Ken Tanizawa,et al.  32×32 strictly non-blocking Si-wire optical switch on ultra-small die of 11×25 mm2 , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[5]  Ming C. Wu,et al.  Large-port-count MEMS silicon photonics switches , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[6]  Ming C. Wu,et al.  Monolithic 50×50 MEMS silicon photonic switches with microsecond response time , 2014, OFC 2014.

[7]  Hitoshi Kawashima,et al.  Compact 5 × 5 wavelength-selective cross connect using integrated 2-D MEMS mirror arrays , 2013, Technical Digest of the Eighteenth Microoptics Conference.

[8]  Steve Frisken,et al.  LCOS-based matrix switching for 2×4 WSS for fully flexible channel selection , 2012, 2012 International Conference on Photonics in Switching (PS).

[9]  Young-Kai Chen,et al.  Compact, low-loss and low-power 8×8 broadband silicon optical switch. , 2012, Optics express.

[10]  Anthony L Lentine,et al.  Vertical junction silicon microdisk modulators and switches. , 2011, Optics express.

[11]  X. Zhang,et al.  Systematic investigation of silicon digital 1×2 electro-optic switch based on a microdisk resonator through carrier injection , 2011 .

[12]  Guo-Qiang Lo,et al.  Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[13]  Toshio Watanabe,et al.  Compact PLC-based transponder aggregator for colorless and directionless ROADM , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[14]  S. Yuan,et al.  Scaling Optical Switches to 100 Tb/s Capacity , 2010 .

[15]  Michal Lipson,et al.  Broadband CMOS-compatible silicon photonic electro-optic switch for photonic networks-on-chip , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[16]  Joris Van Campenhout,et al.  Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. , 2009, Optics express.

[17]  J. Bowers Low power 3D MEMS optical switches , 2009, 2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[18]  Yuzo Ishii,et al.  MEMS-based 1×43 wavelength-selective switch with flat passband , 2009, 2009 35th European Conference on Optical Communication.

[19]  A.S. Kewitsch Large Scale, All-Fiber Optical Cross-Connect Switches for Automated Patch-Panels , 2009, Journal of Lightwave Technology.

[20]  K. Watanabe,et al.  Ultralow Power Consumption Silica-Based PLC-VOA/Switches , 2008, Journal of Lightwave Technology.

[21]  Norazlina Mohamed,et al.  Digital optical switch , 2008 .

[22]  S. Frisken Advances in Liquid Crystal on Silicon Wavelength Selective Switching , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[23]  J. Kelly Application of Liquid Crystal Technology to Telecommunication Devices , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[24]  Ming C. Wu,et al.  Optical MEMS for Lightwave Communication , 2006, Journal of Lightwave Technology.

[25]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  H. Takahashi,et al.  Silica-based PLC Type 32 x 32 Optical Matrix Switch , 2006, 2006 European Conference on Optical Communications.

[27]  Hiroshi Fukuda,et al.  Low-loss Si wire waveguides and their application to thermooptic switches , 2006 .

[28]  M.C. Wu,et al.  A high port-count wavelength-selective switch using a large scan-angle, high fill-factor, two-axis MEMS scanner array , 2006, IEEE Photonics Technology Letters.

[29]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[30]  Hao Zhou,et al.  Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[31]  Jui-che Tsai,et al.  N 2 Wavelength-Selective Switch With Two Cross-Scanning One-Axis Analog Micromirror Arrays in a 4 − f Optical System , 2006 .

[32]  M.C. Wu,et al.  Surface- and bulk- micromachined two-dimensional scanner driven by angular vertical comb actuators , 2005, Journal of Microelectromechanical Systems.

[33]  L. Lin,et al.  Monolithic 2-D scanning mirror using self-aligned angular vertical comb drives , 2005, IEEE Photonics Technology Letters.

[34]  T. Tsuda,et al.  Optical MEMS for photonic switching-compact and stable optical crossconnect switches for simple, fast, and flexible wavelength applications in recent photonic networks , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  Fang Wang,et al.  Intelligent Optical Cross-Connect Subsystem on a Chip , 2005 .

[36]  Xiang Liu,et al.  Wavelength blocking filter with flexible data rates and channel spacing , 2005, Journal of Lightwave Technology.

[37]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[38]  M.C. Wu,et al.  Low-voltage, large-scan angle MEMS analog micromirror arrays with hidden vertical comb-drive actuators , 2004, Journal of Microelectromechanical Systems.

[39]  C. Nuzman,et al.  Performance of an optical switch based on 3-D MEMS crossconnect , 2004, IEEE Photonics Technology Letters.

[40]  L. Buhl,et al.  A hybrid MEMS-waveguide wavelength selective cross connect , 2004, IEEE Photonics Technology Letters.

[41]  Gwo-Bin Lee,et al.  A high-speed low-voltage double-switch optical crossconnect using stress-induced bending micromirrors , 2004, IEEE Photonics Technology Letters.

[42]  Francesco G. Della Corte,et al.  Digital optical switch based on amorphous silicon waveguide , 2003, International Commission for Optics.

[43]  C. Nuzman,et al.  1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss , 2003, IEEE Photonics Technology Letters.

[44]  Flavio Pardo,et al.  Crystalline silicon tilting mirrors for optical cross-connect switches , 2003 .

[45]  N. Takeuchi,et al.  A three-dimensional MEMS optical switching module having 100 input and 100 output ports , 2003, IEEE Photonics Technology Letters.

[46]  M. Mughal,et al.  Broadband optical equalizer using fault tolerant digital micromirrors. , 2003, Optics express.

[47]  C. R. Giles,et al.  Beam-steering micromirrors for large optical cross-connects , 2003 .

[48]  G. Papadimitriou,et al.  Optical switching: switch fabrics, techniques, and architectures , 2003 .

[49]  Li Fan,et al.  Design, manufacture and reliability of 2D MEMS optical switches , 2003, Photonics Fabrication Europe.

[50]  Jungsang Kim,et al.  Performance of large scale MEMS-based optical crossconnect switches , 2002, The 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[51]  R.R.A. Syms Scaling laws for MEMS mirror-rotation optical cross connect switches , 2002 .

[52]  N. Takeuchi,et al.  Single Si crystal 1024 ch MEMS mirror based on terraced electrodes and a high-aspect ratio torsion spring for 3-D cross-connect switch , 2002, IEEE/LEOS International Conference on Optical MEMs.

[53]  S. Ueda,et al.  A 2-axis comb-driven micromirror array for 3D MEMS switches , 2002, IEEE/LEOS International Conference on Optical MEMs.

[54]  Brian Robertson,et al.  Adaptive beam steering implemented in a ferroelectric liquid-crystal spatial-light-modulator free-space, fiber-optic switch. , 2002, Applied optics.

[55]  A. S. Greenblatt,et al.  Performance and modeling of advanced Ti:LiNbO/sub 3/ digital optical switches , 2002 .

[56]  K. Falta,et al.  Digital MEMS for optical switching , 2002, IEEE Commun. Mag..

[57]  Clinton Randy Giles,et al.  The Lucent LambdaRouter: MEMS technology of the future here today , 2002, IEEE Commun. Mag..

[58]  Robert G. Lindquist,et al.  Liquid crystals in bulk optics-based DWDM optical switches and spectral equalizers , 2001, LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242).

[59]  L. Noirie,et al.  Performance assessment of a liquid crystal multichannel photonic space-switch , 2001 .

[60]  Masayuki Okuno,et al.  Low loss and high extinction ratio strictly nonblocking 16/spl times/16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology , 2001 .

[61]  Wei Xin,et al.  The MONET project-a final report , 2000, Journal of Lightwave Technology.

[62]  R.W. Tkach,et al.  On the expandability of free-space micromachined optical cross connects , 2000, Journal of Lightwave Technology.

[63]  L. Eldada,et al.  Thermo-optically active polymeric photonic components , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[64]  Kam Y. Lau,et al.  A FLAT HIGH-FREQUENCY SCANNING MICROMIRROR , 2000 .

[65]  Hongrui Jiang,et al.  Integrated polysilicon and DRIE bulk silicon micromachining for an electrostatic torsional actuator , 1999 .

[66]  R.T. Chen,et al.  A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch , 1999, IEEE Photonics Technology Letters.

[67]  Nabeel A. Riza,et al.  Reconfigurable wavelength add-drop filtering based on a Banyan network topology and ferroelectric liquid crystal fiber-optic switches , 1999 .

[68]  S. Yuan,et al.  General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses. , 1999, Applied optics.

[69]  V. Aksyuk,et al.  Wavelength add-drop switching using tilting micromirrors , 1999 .

[70]  R. W. Tkach,et al.  Free-space micromachined optical switches for optical networking , 1999 .

[71]  Masayuki Okuno,et al.  Low-Loss and High-Extinction-Ratio Silica-Based Strictly Nonblocking 16 · 16 Thermooptic Matrix Switch , 1999 .

[72]  Akira Himeno,et al.  Silica-Based Planar Lightwave Circuits , 1998 .

[73]  J. A. Walker,et al.  Dynamic spectral power equalization using micro-opto-mechanics , 1998, IEEE Photonics Technology Letters.

[74]  K. Y. Lau,et al.  Surface-micromachined microoptical elements and systems , 1998, Proc. IEEE.

[75]  Magnetically Actuated Micromirrors for Fiber-Optic Switching , 1998 .

[76]  R. Tkach,et al.  Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects , 1998, IEEE Photonics Technology Letters.

[77]  Noel C. MacDonald,et al.  SINGLE CRYSTAL SILICON SUPPORTED THIN FILM MICROMIRRORS FOR OPTICAL APPLICATIONS , 1997 .

[78]  Lars Erdmann,et al.  Technique for monolithic fabrication of silicon microlenses with selectable rim angles , 1997 .

[79]  A. Gladisch,et al.  Optical add/drop multiplexers for WDM communication systems , 1997, Proceedings of Optical Fiber Communication Conference (.

[80]  C. Marxer,et al.  Micro-opto-mechanical 2 x 2 switch for single mode fiber based on plasma-etched silicon mirror and electrostatic actuator , 1997 .

[81]  H. Fujita,et al.  Electrostatic micro torsion mirrors for an optical switch matrix , 1996 .

[82]  S. Kuroyanagi,et al.  A polarization-controlled free-space photonic switch based on a PI-LOSS switch , 1993, IEEE Photonics Technology Letters.

[83]  Y. Fujii,et al.  Low-crosstalk 1*2 optical switch composed of twisted nematic liquid crystal cells , 1993, IEEE Photonics Technology Letters.

[84]  Y. Fujii Low-crosstalk 2*3 optical switch composed of twisted nematic liquid crystal cells , 1993, IEEE Photonics Technology Letters.

[85]  A. C. O'Donnell Polarisation independent 1*16 and 1*32 lithium niobate optical switch matrices , 1991 .

[86]  C. Yakymyshyn,et al.  A 2*2 fiber optic switch using chiral liquid crystals , 1990, IEEE Photonics Technology Letters.

[87]  Shuji Suzuki,et al.  Polarization Independent LiNbO, 8 x 8 Matrix Switch , 1990 .

[88]  Arun N. Netravali,et al.  Dilated Networks for Photonic Switching , 1987, IEEE Trans. Commun..

[89]  K. Murakami,et al.  Path-independent insertion loss optical space switch , 1987 .

[90]  R. Spanke,et al.  Architectures for large nonblocking optical space switches , 1986 .

[91]  J. Prisco A low-crosstalk liquid crystal optical switch , 1985, Journal of Lightwave Technology.

[92]  Richard A. Soref,et al.  Low-cross-talk 2 × 2optical switch , 1981 .

[93]  R E Wagner,et al.  Electrically controlled optical switch for multimode fiber applications. , 1980, Applied optics.

[94]  Tsutomu Aoyama,et al.  Nonblocking 8×8 optical matrix switch for fibre-optic communication , 1980 .

[95]  D H McMahon,et al.  Total switching of unpolarized fiber light with a four-port electro-optic liquid-crystal device. , 1980, Optics letters.

[96]  Tsutomu Aoyama,et al.  Low-loss 4 × 4 optical matrix switch for fibre-optic communication , 1979 .

[97]  D. Marcuse Loss analysis of single-mode fiber splices , 1977, The Bell System Technical Journal.

[98]  H. Kogelnik,et al.  Coupling and Conversion Coefficients for Optical Modes , 1964 .

[99]  Charles Clos,et al.  A study of non-blocking switching networks , 1953 .