A Micro-Differential Evolution Algorithm for Continuous Complex Functions

In this paper, we incorporate a local search procedure into a micro differential evolution algorithm MED with the aim of solving the HappyCat function. Our purpose is to find out if our proposal is more competitive than a Ray-ES algorithm. We test our micro Differential Evolution algorithm ( $\mu $ DE) on HappyCat and HGBat functions. The results that we obtained with micro-DE are better compared with the results the original RayES reference algorithm. This analysis supports our conjecture that a reduced population DE hybridized with a local search (Ray search) is a key combination in dealing with this function. Our results support the hypothesis that a well-focused micro population is more accurate and efficient than existing techniques, representing (that of micro-algorithms) a serious competitor because of its efficiency and accuracy. In fact, the proposed (but never solved) HGBat function can be dealt with, showing the scalability and potential future uses of our technique.

[1]  M. Friedman A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .

[2]  Hans-Georg Beyer,et al.  HappyCat - A Simple Function Class Where Well-Known Direct Search Algorithms Do Fail , 2012, PPSN.

[3]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[4]  Hernan Peraza-Vázquez,et al.  Self-Adaptive Differential Evolution Hyper-Heuristic with Applications in Process Design , 2016, Computación y Sistemas.

[5]  Václav Snásel,et al.  Many-Threaded Differential Evolution on the GPU , 2013, Massively Parallel Evolutionary Computation on GPGPUs.

[6]  José Manuel García Nieto,et al.  Emergent optimization: design and applications in telecommunications and bioinformatics , 2013 .

[7]  Enrique Alba,et al.  A parallel micro evolutionary algorithm for heterogeneous computing and grid scheduling , 2012, Appl. Soft Comput..

[8]  Tobias Glasmachers,et al.  Handling sharp ridges with local supremum transformations , 2014, GECCO.

[9]  Juan Carlos Herrera-Lozada,et al.  Micro Differential Evolution Performance Empirical Study for High Dimensional Optimization Problems , 2013, LSSC.

[10]  John R. Koza,et al.  Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems , 1990 .

[11]  Alex S. Fukunaga,et al.  Improving the search performance of SHADE using linear population size reduction , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[12]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[13]  Patrick Siarry,et al.  Particle swarm and ant colony algorithms hybridized for improved continuous optimization , 2007, Appl. Math. Comput..

[14]  Thomas Stützle,et al.  A unified ant colony optimization algorithm for continuous optimization , 2014, Eur. J. Oper. Res..

[15]  Ruhul A. Sarker,et al.  United multi-operator evolutionary algorithms , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[16]  Philippe Preux,et al.  Bandits attack function optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[17]  Enrique Alba,et al.  A Methodology for Comparing the Execution Time of Metaheuristics Running on Different Hardware , 2012, EvoCOP.

[18]  K. V. Price,et al.  Differential evolution: a fast and simple numerical optimizer , 1996, Proceedings of North American Fuzzy Information Processing.

[19]  Antonio Bolufé Röhler,et al.  Differential evolution with thresheld convergence , 2013, 2013 IEEE Congress on Evolutionary Computation.

[20]  Bernice W. Polemis Nonparametric Statistics for the Behavioral Sciences , 1959 .

[21]  Enrique Alba,et al.  Micro-differential evolution with local search for high dimensional problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[22]  Zhongyi Hu,et al.  Partial opposition-based adaptive differential evolution algorithms: Evaluation on the CEC 2014 benchmark set for real-parameter optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[23]  Luis Velasco,et al.  Experimental Demonstration of an Impairment Aware Network Planning and Operation Tool for Transparent/Translucent Optical Networks , 2011, Journal of Lightwave Technology.

[24]  Ying Tan,et al.  Fireworks algorithm with differential mutation for solving the CEC 2014 competition problems , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[25]  D. Zaharie A Comparative Analysis of Crossover Variants in Differential Evolution , 2007 .

[26]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[27]  Konstantinos E. Parsopoulos,et al.  Cooperative micro-differential evolution for high-dimensional problems , 2009, GECCO.

[28]  Juan Carlos Herrera-Lozada,et al.  A Micro Artificial Immune System , 2011, Polibits.

[29]  Ponnuthurai Nagaratnam Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization , 2014 .

[30]  Ahmet Irfan Oyman,et al.  Convergence behavior of evolution strategies on ridge functions , 1999 .

[31]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[32]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[33]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[34]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[35]  Qingfu Zhang,et al.  Distributed evolutionary algorithms and their models: A survey of the state-of-the-art , 2015, Appl. Soft Comput..

[36]  Ponnuthurai N. Suganthan,et al.  Adaptive Differential Evolution with Locality based Crossover for Dynamic Optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[37]  István Erlich,et al.  Evaluating the Mean-Variance Mapping Optimization on the IEEE-CEC 2014 test suite , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[38]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[39]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[40]  Yuri Malitsky,et al.  Features for Exploiting Black-Box Optimization Problem Structure , 2013, LION.

[41]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .