A hybrid algorithm for terrain simplification

Terrain surface simplification or approximation is very important in many terrainrelated applications. Due to a variety of reasons such as the data acquisition method and more detailed features information, terrain models are extremely, and not necessarily, large nowadays. A fast algorithm that can produce compact yet highly accurate model would be desirable. In this thesis, a hybrid algorithm integrating greedy insertion and quadric error based approximation is given. This algorithm is designed to provide a highquality approximation of original model, yet reasonably fast. Experiments show quality improvements of the approximated models over previous methods.

[1]  Paolo Cignoni,et al.  A comparison of mesh simplification algorithms , 1998, Comput. Graph..

[2]  Cláudio T. Silva,et al.  A memory insensitive technique for large model simplification , 2001, Proceedings Visualization, 2001. VIS '01..

[3]  Joseph S. B. Mitchell,et al.  Visibility preserving terrain simplification: an experimental study , 2002, SCG '02.

[4]  P LuebkeDavid A Developer's Survey of Polygonal Simplification Algorithms , 2001 .

[5]  Renato Pajarola,et al.  QuadTIN: quadtree based triangulated irregular networks , 2002, IEEE Visualization, 2002. VIS 2002..

[6]  Valerio Pascucci,et al.  Terrain Simplification Simplified: A General Framework for View-Dependent Out-of-Core Visualization , 2002, IEEE Trans. Vis. Comput. Graph..

[7]  Amitabh Varshney,et al.  Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[8]  William Ribarsky,et al.  Real-time, continuous level of detail rendering of height fields , 1996, SIGGRAPH.

[9]  Pavan K. Desikan,et al.  An efficient algorithm for terrain simplification , 1997, SODA '97.

[10]  Hugues Hoppe Smooth view-dependent level-of-detail control and its application to terrain rendering , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[11]  James J. Little,et al.  Ordering Points for Incremental TIN Construction from DEMs , 2003, GeoInformatica.

[12]  James J. Little,et al.  Automatic extraction of Irregular Network digital terrain models , 1979, SIGGRAPH.

[13]  James H. Clark,et al.  Hierarchical geometric models for visible surface algorithms , 1976, CACM.

[14]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[15]  Xin Chen,et al.  Fast segmentation of range images into planar regions , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  B. Jünger,et al.  Selecting Independent Vertices for Terrain Simplification , 1998 .

[17]  Mark de Berg,et al.  On levels of detail in terrains , 1995, SCG '95.

[18]  M. Garland,et al.  Fast Polygonal Approximation of Terrains and Height Fields , 1998 .

[19]  Michela Bertolotto,et al.  Pyramidal simplicial complexes , 1995, SMA '95.

[20]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[21]  Mark A. Duchaineau,et al.  ROAMing terrain: Real-time Optimally Adapting Meshes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[22]  Subhash Suri,et al.  Surface approximation and geometric partitions , 1994, SODA '94.

[23]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .

[24]  David G. Kirkpatrick,et al.  Right-Triangulated Irregular Networks , 2001, Algorithmica.

[25]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[26]  Michael T. Goodrich,et al.  Efficient perspective-accurate silhouette computation , 1999, SCG '99.

[27]  Parris K. Egbert,et al.  Terrain Decimation through Quadtree Morphing , 2001, IEEE Trans. Vis. Comput. Graph..

[28]  Hans-Peter Seidel,et al.  Real-time generation of continuous levels of detail for height fields , 1998 .

[29]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[30]  Russell H. Taylor,et al.  Superfaces: polygonal mesh simplification with bounded error , 1996, IEEE Computer Graphics and Applications.

[31]  Bianca Falcidieno,et al.  A Delaunay-Based Method for Surface Approximation , 1983, Eurographics.

[32]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[34]  Sung-Bong Yang,et al.  A fast digital terrain simplification algorithm with a partitioning method , 2000, Proceedings Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region.

[35]  M. Garland,et al.  Quadric-Based Polygonal Surface Simplification , 1999 .

[36]  Thomas Gerstner Multiresolution Visualization and Compression of Global Topographic Data , 2001 .

[37]  Renato Pajarola,et al.  Large scale terrain visualization using the restricted quadtree triangulation , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[38]  Mohammad Ghodsi,et al.  A coarse grained parallel solution to terrain simplification , 1998, CCCG.

[39]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[40]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[41]  James J. Little,et al.  Structural Lines, TINs, and DEMs , 2001, Algorithmica.

[42]  Ramesh Raskar,et al.  Image precision silhouette edges , 1999, SI3D.

[43]  Angel Plaza,et al.  Refinement and Hierarchical Coarsening Schemes for Triangulated Surfaces , 2003, WSCG.