Effect of BaO Addition on Crystallization, Microstructure, and Properties of Diopside-Ca-Tschermak Clinopyroxene-Based Glass-Ceramics

This work presents the processing and the characterization of diopside–Ca-Tschermak clinopyroxene-based glass–ceramics (GCs), where partial (i.e., 5%, 10%, and 20%) substitution of Ba for Ca was attempted in the composition of CaMg0.8Al0.4Si1.8O6. Sintering, crystallization, microstructure, and properties of the new materials were investigated under different heat-treatment conditions concerning heating rates (5–40 K/min), temperatures (850°–1000°C), and times (1–300 h). The good matching of thermal expansion coefficients and the strong, but not reactive, adhesion to yttria-stabilized cubic zirconia, in conjunction with the low level of electrical conductivity and oxygen permeability, indicate that the investigated GCs are suitable for further experimentation as candidates for solid oxide fuel cells sealants.

[1]  F. Snijkers,et al.  Ion Transport and Thermomechanical Properties of SrFe ( Al ) O3 − δ – SrAl2O4 Composite Membranes , 2006 .

[2]  M. Kuwabara,et al.  Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses , 2006 .

[3]  M. Brochu,et al.  Comparison Between Micrometer‐ and Nano‐Scale Glass Composites for Sealing Solid Oxide Fuel Cells , 2006 .

[4]  N. Menzler,et al.  Interaction of metallic SOFC interconnect materials with glass–ceramic sealant in various atmospheres , 2005 .

[5]  E. Gamble,et al.  Crystallization kinetics of a solid oxide fuel cell seal glass by differential thermal analysis , 2005 .

[6]  Jeffrey W. Fergus,et al.  Sealants for solid oxide fuel cells , 2005 .

[7]  V. Kharton,et al.  Oxygen ionic and electronic transport in apatite-type La10−x(Si,Al)6O26±δ , 2005 .

[8]  H. Darwish,et al.  Crystallization and properties of glasses based on diopside–Ca-Tschermak’s–fluorapatite system , 2005 .

[9]  K. Sandhage,et al.  Synthesis of celsian (BaAl2Si2O8) from solid Ba-Al-Al2O3-SiO2 precursors : I, XRD and SEM/EDX analyses of phase evolution , 2005 .

[10]  M. Pascual,et al.  Sintering of glasses in the system RO–Al2O3–BaO–SiO2 (R=Ca, Mg, Zn) studied by hot-stage microscopy , 2004 .

[11]  K. J. Rao,et al.  Can any material form a glass , 2004 .

[12]  Goo-Dae Kim,et al.  Suitable Glass‐Ceramic Sealant for Planar Solid‐Oxide Fuel Cells , 2004 .

[13]  W.Grover Coors,et al.  Protonic ceramic fuel cells for high-efficiency operation with methane , 2003 .

[14]  Se-Young Choi,et al.  Stable sealing glass for planar solid oxide fuel cell , 2002 .

[15]  C. Angell,et al.  Oxide ion conducting glasses: Synthetic strategies based on liquid state and solid state routes , 2001 .

[16]  Vladislav V. Kharton,et al.  Interfacial effects in electrochemical cells for oxygen ionic conduction measurements: I. The e.m.f. method , 2001 .

[17]  L. Singheiser,et al.  Crystallisation kinetics in AO-Al2O3-SiO2-B2O3 glasses (A = Ba, Ca, Mg) , 2000 .

[18]  Sungtae Kim,et al.  Mechanical properties of off-stoichiometric BaO·Al2O3·2SiO2 glass-ceramics , 1999 .

[19]  L. Barbieri,et al.  Influence of some transition metal cations on the properties of BaO-containing glasses and glass-ceramics , 1999 .

[20]  W. Krätschmer,et al.  Preparation and characterisation of C119 , 1997 .

[21]  J. McKittrick,et al.  Vitrification and crystallization of barium aluminosilicate glass ceramics from zeolite precursors , 1996 .

[22]  S. Komarneni,et al.  Crystallization and Seeding Effect in BaAl2Si2O8 Gels , 1995 .

[23]  William E Lee,et al.  PREPARATION AND CHARACTERISATION OF ALKOXIDE-DERIVED CELSIAN GLASS-CERAMIC , 1991 .

[24]  Narottam P. Bansal,et al.  Crystallization kinetics of BaO–Al_2O_3–SiO_2 glasses , 1989 .

[25]  Nobuo Morimoto,et al.  Nomenclature of Pyroxenes , 1988, Mineralogical Magazine.

[26]  A. West,et al.  High oxide ion conductivity in Ca12Al14O33 , 1988, Nature.

[27]  S. Sakka,et al.  Kinetic study of crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot , 1980 .

[28]  D. Bahat Kinetic study on the hexacelsian-celsian phase transformation , 1970 .

[29]  W. R. Foster,et al.  Studies in the system BaO-Al2O3-SiO2 I. The polymorphism of celsian , 1968 .

[30]  J. Mackenzie,et al.  Ionic Conductivity in Calcium Silicate Glasses , 1966 .

[31]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[32]  G. Kuczynski,et al.  Sintering of Glass , 1956 .

[33]  J. Ferreira,et al.  Diopside–Ca-Tschermak clinopyroxene based glass–ceramics processed via sintering and crystallization of glass powder compacts , 2007 .

[34]  J. Ferreira,et al.  Crystallization behaviour, structure and properties of sintered glasses in the diopside–Ca-Tschermak system , 2007 .

[35]  M. Brochu,et al.  Comparison between barium and strontium-glass composites for sealing SOFCs , 2006 .

[36]  M. Pascual,et al.  Transport properties of sealants for high-temperature electrochemical applications: RO–BaO–SiO2 (R = Mg, Zn) glass–ceramics , 2006 .

[37]  R. Flemming,et al.  29Si MAS NMR study of diopside–Ca-Tschermak clinopyroxenes: Detecting both tetrahedral and octahedral Al substitution , 2002 .

[38]  J. Boivin,et al.  A new anionic conductive vitreous phase based on bismuth, lead, cadmium, oxygen and fluorine: electrical properties and structural study of the recrystallized phase , 2000 .

[39]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables Fourth Edition , 1998 .

[40]  E. Vance,et al.  DTA/SEM study of crystallization in sphene glass-ceramics , 1987 .

[41]  Zdeněk Strnad,et al.  Glass ceramic materials , 1965 .