Analysis on Extended Heisenberg Group

Dans ce travail, nous etudions les semi-groupes de Markov produits par les operateurs de type d'Hormander-Dunkl sur le groupe d'Heisenberg.

[1]  B. Zegarliński,et al.  From U-bounds to isoperimetry with applications to H-type groups , 2009, 0912.0236.

[2]  B. Zegarliński,et al.  Coercive Inequalities on Metric Measure Spaces , 2009, 0905.1713.

[3]  Nathaniel Eldredge Gradient estimates for the subelliptic heat kernel on H-type groups , 2009, 0904.1781.

[4]  Nathaniel Eldredge Precise estimates for the subelliptic heat kernel on H-type groups , 2008, 0810.3218.

[5]  P. Niu,et al.  HARDY INEQUALITIES IN HALF SPACES OF THE HEISENBERG GROUP , 2008 .

[6]  B. Zegarliński,et al.  Coercive inequalities for Hörmander type generators in infinite dimensions , 2007 .

[7]  Hong-Quan Li Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg , 2006 .

[8]  T. Melcher,et al.  Hypoelliptic heat kernel inequalities on the Heisenberg group , 2005 .

[9]  M. Noumi Painlevé Equations through Symmetry , 2004 .

[10]  M. Rosler Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators , 1997, q-alg/9703006.

[11]  Alexander Grigor cprimeyan Gaussian upper bounds for the heat kernel on arbitrary manifolds , 1997 .

[12]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[13]  E. Davies HEAT KERNEL BOUNDS FOR SECOND ORDER ELLIPTIC OPERATORS ON RIEMANNIAN MANIFOLDS , 1987 .

[14]  E. Davies,et al.  EXPLICIT CONSTANTS FOR GAUSSIAN UPPER BOUNDS ON HEAT KERNELS , 1987 .

[15]  Barry Simon,et al.  Ultracontractivity and the Heat Kernel for Schrijdinger Operators and Dirichlet Laplacians , 1987 .

[16]  D. Aronson,et al.  Non-negative solutions of linear parabolic equations , 1968 .