Estimates of evapotranspiration from MODIS and AMSR-E land surface temperature and moisture over the Southern Great Plains

Abstract We apply a new stationarity-based method for estimating the parameters of a simplified land surface model over a 10° × 10° study area in the Southern Great Plains. The model is then used to calculate evapotranspiration (ET) using the estimated parameters, atmospheric forcing data (from NLDAS-2) and remotely sensed surface soil moisture (from AMSR-E) and temperature (from AMSR-E and MODIS). By exploiting the statistical relationship between the forcing (e.g., precipitation and radiation) and surface states (soil moisture and temperature), the stationarity-based parameter estimation avoids the restrictive requirements of direct calibration (i.e., the need for ground-truth ET), enabling broad applicability. Modeled annual mean ET rates are compared with benchmark values based on runoff data from Global Runoff Data Center (GRDC), and the root mean square error (RMSE) between them is less than 10 Wm − 2 . Spatial patterns of model estimated ET and of key model parameters indicate that radiation and moisture availability are the controlling factors on ET in the study area. The spatial distributions of the estimated parameters appear reasonable: they are smooth and not overly patchy or random; and they are consistent with the land cover and soil moisture distribution through the area. An important feature of the stationarity-based method demonstrated here is that forcing and surface states need not be continuous. In this application, approximately 30% of the daily surface temperature and moisture data were missing.

[1]  Jeffrey P. Walker,et al.  A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index , 2001, IEEE Trans. Geosci. Remote. Sens..

[2]  Xiuji Zhou,et al.  Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature//emissivity products , 2005 .

[3]  R. Jeu,et al.  Land surface temperature from Ka band (37 GHz) passive microwave observations , 2009 .

[4]  W. Bastiaanssen SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey , 2000 .

[5]  S. Running,et al.  Regional evaporation estimates from flux tower and MODIS satellite data , 2007 .

[6]  R. Jeu,et al.  Multisensor historical climatology of satellite‐derived global land surface moisture , 2008 .

[7]  Kenta Ogawa,et al.  Estimating Broadband Emissivity of Arid Regions and Its Seasonal Variations Using Thermal Infrared Remote Sensing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Dara Entekhabi,et al.  Parameter estimation of coupled water and energy balance models based on stationary constraints of surface states , 2011 .

[9]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[10]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[11]  Thomas J. Jackson,et al.  Soil moisture retrieval from AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  Fabio Castelli,et al.  Estimation of Surface Turbulent Fluxes through Assimilation of Radiometric Surface Temperature Sequences , 2004 .

[13]  W. Bastiaanssen,et al.  A remote sensing surface energy balance algorithm for land (SEBAL). , 1998 .

[14]  Shafiqul Islam,et al.  Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model , 2008 .

[15]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[16]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[17]  Frank Veroustraete,et al.  Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation , 2008, Sensors.

[18]  Martha C. Anderson,et al.  A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing , 1997 .

[19]  Isabelle Braud,et al.  A simple water and energy balance model designed for regionalization and remote sensing data utilization , 2000 .

[20]  Dara Entekhabi,et al.  An alternate and robust approach to calibration for the estimation of land surface model parameters based on remotely sensed observations , 2011 .

[21]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[22]  K. Mitchell,et al.  Impact of Atmospheric Surface-layer Parameterizations in the new Land-surface Scheme of the NCEP Mesoscale Eta Model , 1997 .

[23]  John W. Salisbury,et al.  Emissivity of terrestrial materials in the 8-14 microns atmospheric window , 1992 .

[24]  Guido D. Salvucci,et al.  Estimating the moisture dependence of root zone water loss using conditionally averaged precipitation , 2001 .

[25]  William P. Kustas,et al.  Estimates of Evapotranspiration with a One- and Two-Layer Model of Heat Transfer over Partial Canopy Cover , 1990 .

[26]  Luis A. Bastidas,et al.  Constraining a physically based Soil‐Vegetation‐Atmosphere Transfer model with surface water content and thermal infrared brightness temperature measurements using a multiobjective approach , 2005 .

[27]  M. S. Moran,et al.  Single- and Dual-Source Modeling of Surface Energy Fluxes with Radiometric Surface Temperature , 1996 .

[28]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[29]  Jean-Pierre Wigneron,et al.  Estimation of Evapotranspiration and Photosynthesis by Assimilation of Remote Sensing Data into SVAT Models , 1999 .

[30]  J. Garratt The Atmospheric Boundary Layer , 1992 .

[31]  R. Francey,et al.  Bulk characteristics of heat transfer in the unstable, baroclinic atmospheric boundary layer , 1978 .

[32]  Albert Olioso,et al.  Simulation of diurnal transpiration and photosynthesis of a water stressed soybean crop , 1996 .

[33]  Bo-Hui Tang,et al.  Estimation of broadband surface emissivity from narrowband emissivities. , 2011, Optics express.

[34]  Matthew F. McCabe,et al.  Evaluation of Remotely Sensed Evapotranspiration Over the CEOP EOP-1 Reference Sites , 2007 .

[35]  E. Noordman,et al.  SEBAL model with remotely sensed data to improve water-resources management under actual field conditions , 2005 .

[36]  A. Dai,et al.  Revisiting the parameterization of potential evaporation as a driver of long‐term water balance trends , 2008 .

[37]  W. Wagner,et al.  An Intercomparison of ERS-Scat and AMSR-E Soil Moisture Observations with Model Simulations over France , 2009 .

[38]  D. Vidal-Madjar,et al.  Assimilation of soil moisture inferred from infrared remote sensing in a hydrological model over the HAPEX-MOBILHY region , 1994 .

[39]  Thomas R. H. Holmes,et al.  An evaluation of AMSR–E derived soil moisture over Australia , 2009 .

[40]  J. Salisbury,et al.  Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .

[41]  J. Singh,et al.  Intra-seasonal variation and relationship among leaf traits of different forest herbs in a dry tropical environment , 2011 .

[42]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[43]  Matthew F. McCabe,et al.  Modeling Evapotranspiration during SMACEX: Comparing Two Approaches for Local- and Regional-Scale Prediction , 2005 .

[44]  W. Oechel,et al.  Energy balance closure at FLUXNET sites , 2002 .

[45]  S. Seneviratne,et al.  A regional perspective on trends in continental evaporation , 2009 .

[46]  V. Caselles,et al.  Influence of soil water content on the thermal infrared emissivity of bare soils: Implication for land surface temperature determination , 2007 .

[47]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[48]  W. Wagner,et al.  Global Soil Moisture Patterns Observed by Space Borne Microwave Radiometers and Scatterometers , 2008 .

[49]  M. S. Moran,et al.  Use of ground‐based remotely sensed data for surface energy balance evaluation of a semiarid rangeland , 1994 .

[50]  J. D. Tarpley,et al.  Real‐time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project , 2003 .

[51]  Limin Yang,et al.  Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data , 2000 .

[52]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[53]  B. Séguin,et al.  Using midday surface temperature to estimate daily evaporation from satellite thermal IR data , 1983 .

[54]  W. J. Shuttleworth,et al.  Parameter estimation of a land surface scheme using multicriteria methods , 1999 .

[55]  B. Séguin,et al.  Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches , 2005 .

[56]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[57]  J. Norman,et al.  Surface flux estimation using radiometric temperature: A dual‐temperature‐difference method to minimize measurement errors , 2000 .

[58]  Anne Verhoef,et al.  Some Practical Notes on the Parameter kB−1 for Sparse Vegetation , 1997 .

[59]  Jeffrey P. Walker,et al.  Comparison of Microwave and Infrared Land Surface Temperature Products Over the NAFE'06 Research Sites , 2008, IEEE Geoscience and Remote Sensing Letters.

[60]  Pamela L. Nagler,et al.  Integrating Remote Sensing and Ground Methods to Estimate Evapotranspiration , 2007 .

[61]  Matthew F. McCabe,et al.  Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors , 2006 .

[62]  M. S. Moran,et al.  Using satellite remote sensing to extrapolate evapotranspiration estimates in time and space over a semiarid Rangeland basin , 1994 .

[63]  Ramesh K. Singh,et al.  Application of SEBAL Model for Mapping Evapotranspiration and Estimating Surface Energy Fluxes in South-Central Nebraska , 2008 .

[64]  J. Norman,et al.  Remote sensing of surface energy fluxes at 101‐m pixel resolutions , 2003 .

[65]  William P. Kustas,et al.  Use of remote sensing for evapotranspiration monitoring over land surfaces , 1996 .