Surface Plasmonic Lattice Solitons in Semi-Infinite Graphene Sheet Arrays

We investigate the surface plasmonic lattice solitons (PLSs) in semi-infinite graphene sheet arrays. The surface soliton is formed as the surface plasmon polaritons (SPPs) tunneling is inhibited by the graphene nonlinearity, and meanwhile the incident power should be above a threshold value. Thanks to the strong confinement of SPPs on graphene, the effective width of surface PLSs can be squeezed into deep-subwavelength scale of ∼0.002λ . The influence of the graphene loss on the surface PLSs is also discussed. Based on the stable propagation of surface PLSs, we find that the light propagation can be switched from the array boundary to the inner graphene sheets by reducing the incident power or increasing the chemical potential of graphene. The study may find promising application in optical switches on deep-subwavelength scale.

[1]  N. Peres,et al.  Colloquium: The transport properties of graphene: An introduction , 2010, 1007.2849.

[2]  D. Christodoulides,et al.  Discrete self-focusing in nonlinear arrays of coupled waveguides. , 1988, Optics letters.

[3]  Y. Kivshar Self-localization in arrays of defocusing waveguides. , 1993, Optics letters.

[4]  Anatoly V. Zayats,et al.  Near-field photonics: surface plasmon polaritons and localized surface plasmons , 2003 .

[5]  Jinghua Teng,et al.  Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. , 2012, Physical review letters.

[6]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[7]  Plasmon-negative refraction at the heterointerface of graphene sheet arrays. , 2014, Optics letters.

[8]  J. Dadap,et al.  Optical Third-Harmonic Generation in Graphene , 2013, 1301.1697.

[9]  Hua Long,et al.  Exceptional Points and Asymmetric Mode Switching in Plasmonic Waveguides , 2016, Journal of Lightwave Technology.

[10]  S. Thongrattanasiri,et al.  Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. , 2012, ACS nano.

[11]  Eisenberg,et al.  Diffraction management , 2000, Physical review letters.

[12]  Yuri S. Kivshar,et al.  Discrete solitons in graphene metamaterials , 2014, 1410.4823.

[13]  B. Wang,et al.  Vector plasmonic lattice solitons in nonlinear graphene-pair arrays. , 2016, Optics letters.

[14]  F. J. Garcia-Vidal,et al.  Graphene supports the propagation of subwavelength optical solitons , 2012, 1209.6184.

[15]  Lluis Torner,et al.  Soliton Shape and Mobility Control in Optical Lattices , 2009 .

[16]  Hua Long,et al.  Rabi Oscillations of Plasmonic Supermodes in Graphene Multilayer Arrays , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  H. Long,et al.  Asymmetric plasmonic supermodes in nonlinear graphene multilayers. , 2017, Optics express.

[18]  B. Wang,et al.  Plasmonic Zitterbewegung in binary graphene sheet arrays. , 2015, Optics letters.

[19]  A. Marini,et al.  Theory of graphene saturable absorption , 2016, 1605.06499.

[20]  F. Ye,et al.  Surface plasmonic lattice solitons. , 2012, Optics letters.

[21]  J. S. Aitchison,et al.  Discrete Spatial Optical Solitons in Waveguide Arrays , 1998 .

[22]  Xiang Zhang,et al.  Subwavelength discrete solitons in nonlinear metamaterials. , 2007, Physical review letters.

[23]  D. Mihalache,et al.  Subwavelength plasmonic lattice solitons in arrays of metallic nanowires. , 2010, Physical review letters.

[24]  S. A. Mikhailov,et al.  Nonperturbative quasiclassical theory of the nonlinear electrodynamic response of graphene , 2016, 1608.00877.

[25]  Demetrios N. Christodoulides,et al.  Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices , 2003, Nature.

[26]  Alain Hache,et al.  Discrete surface solitons. , 2005, Optics letters.

[27]  Multiband vector plasmonic lattice solitons. , 2013, Optics letters.

[28]  Arnan Mitchell,et al.  Observation of surface gap solitons in semi-infinite waveguide arrays. , 2006, Physical Review Letters.

[29]  Hua Long,et al.  Optical bistability in defective photonic multilayers doped by graphene , 2017 .

[30]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[31]  Sarah Rothstein,et al.  Optical Solitons From Fibers To Photonic Crystals , 2016 .

[32]  Hua Long,et al.  Numerical Study on Plasmonic Absorption Enhancement by a Rippled Graphene Sheet , 2017, Journal of Lightwave Technology.

[33]  M. Segev,et al.  Multiband vector lattice solitons. , 2003, Physical review letters.

[34]  Y. Kivshar,et al.  Dissipative plasmon‐solitons in multilayer graphene , 2013, 1311.5621.

[35]  A. Alú,et al.  Atomically thin surface cloak using graphene monolayers. , 2011, ACS nano.

[36]  M. Segev,et al.  Theory of Self-Trapped Spatially Incoherent Light Beams , 1997 .

[37]  S. Mikhailov,et al.  Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  Xuefeng Gu,et al.  Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures , 2013 .

[39]  Hua Long,et al.  Nonreciprocal Phase Shift and Mode Modulation in Dynamic Graphene Waveguides , 2016, Journal of Lightwave Technology.

[40]  S. Mikhailov Quantum theory of the third-order nonlinear electrodynamic effects of graphene , 2015, 1506.00534.

[41]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[42]  Y. Kivshar,et al.  Discrete solitons and nonlinear surface modes in semi-infinite waveguide arrays. , 2006, Optics letters.

[43]  F. Lederer,et al.  Observation of discrete quadratic solitons. , 2004, Physical review letters.

[44]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[45]  Plasmonic lattice solitons in nonlinear graphene sheet arrays. , 2015, Optics express.

[46]  Lluis Torner,et al.  Surface gap solitons. , 2006, Physical review letters.