Bijective counting of plane bipolar orientations

Abstract We introduce a bijection between plane bipolar orientations with fixed numbers of vertices and faces, and non-intersecting triples of upright lattice paths with some specific extremities. Writing ϑ i j for the number of plane bipolar orientations with ( i + 1 ) vertices and ( j + 1 ) faces, our bijection provides a combinatorial proof of the following formula due to Baxter: (1) ϑ i j = 2 ( i + j − 2 ) ! ( i + j − 1 ) ! ( i + j ) ! ( i − 1 ) ! i ! ( i + 1 ) ! ( j − 1 ) ! j ! ( j + 1 ) ! .

[1]  Nicolas Bonichon,et al.  Catalan's intervals and realizers of triangulations , 2007, 0704.3731.

[2]  Ira M. Gessel,et al.  Determinants, Paths, and Plane Partitions , 1989 .

[3]  Nicolas Bonichon,et al.  A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck paths , 2005, Discret. Math..

[4]  Ioannis G. Tollis,et al.  Planar grid embedding in linear time , 1989 .

[5]  R. J. Baxter Dichromatic polynomials and Potts models summed over rooted maps , 2000 .

[6]  Clemens Huemer,et al.  A binary labelling for plane Laman graphs and quadrangulations , 2006 .

[7]  Norishige Chiba,et al.  A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees , 1985, J. Comput. Syst. Sci..

[8]  Serge Dulucq,et al.  DISCRETE MATHEMATICS Baxter permutat ions 1 , 2006 .

[9]  Éric Fusy Straight-Line Drawing of Quadrangulations , 2006, Graph Drawing.

[10]  Stefan Felsner,et al.  Geometric Graphs and Arrangements , 2004 .

[11]  Therese C. Biedl,et al.  Partitions of Graphs into Trees , 2006, GD.

[12]  Mireille Bousquet-Mélou,et al.  Four Classes of Pattern-Avoiding Permutations Under One Roof: Generating Trees with Two Labels , 2003, Electron. J. Comb..

[13]  Roberto Tamassia,et al.  A unified approach to visibility representations of planar graphs , 1986, Discret. Comput. Geom..

[14]  Patrice Ossona de Mendez,et al.  Bipolar orientations Revisited , 1995, Discret. Appl. Math..

[15]  Goos Kant,et al.  Regular Edge Labeling of 4-Connected Plane Graphs and Its Applications in Graph Drawing Problems , 1997, Theor. Comput. Sci..

[16]  Nicolas Bonichon,et al.  Intervals in Catalan lattices and realizers of triangulations , 2009, J. Comb. Theory, Ser. A.

[17]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .