Ontology-guided Semantic Composition for Zero-Shot Learning

Zero-shot learning (ZSL) is a popular research problem that aims at predicting for those classes that have never appeared in the training stage by utilizing the inter-class relationship with some side information. In this study, we propose to model the compositional and expressive semantics of class labels by an OWL (Web Ontology Language) ontology, and further develop a new ZSL framework with ontology embedding. The effectiveness has been verified by some primary experiments on animal image classification and visual question answering.

[1]  Ali Farhadi,et al.  OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Hao Wang,et al.  Rethinking Knowledge Graph Propagation for Zero-Shot Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Bernt Schiele,et al.  Latent Embeddings for Zero-Shot Classification , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Maxat Kulmanov,et al.  EL Embeddings: Geometric construction of models for the Description Logic EL ++ , 2019, IJCAI.

[5]  Anton van den Hengel,et al.  Visual Question Answering as a Meta Learning Task , 2017, ECCV.

[6]  Shaogang Gong,et al.  Semantic Autoencoder for Zero-Shot Learning , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Desmond Elliott,et al.  Compositional Generalization in Image Captioning , 2019, CoNLL.

[8]  Boris Motik,et al.  HermiT: An OWL 2 Reasoner , 2014, Journal of Automated Reasoning.

[9]  Jeff Z. Pan,et al.  TrOWL: Tractable OWL 2 Reasoning Infrastructure , 2010, ESWC.

[10]  Franz Baader,et al.  Pushing the EL Envelope , 2005, IJCAI.

[11]  Sanja Fidler,et al.  Predicting Deep Zero-Shot Convolutional Neural Networks Using Textual Descriptions , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[12]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[13]  Huajun Chen,et al.  Generative Adversarial Zero-shot Learning via Knowledge Graphs , 2020, ArXiv.

[14]  Jiaoyan Chen,et al.  Embedding OWL Ontologies with OWL2Vec , 2019, ISWC Satellites.

[15]  Daniel S. Weld,et al.  Information extraction from Wikipedia: moving down the long tail , 2008, KDD.

[16]  Michela Spagnuolo,et al.  Supporting shared hypothesis testing in the biomedical domain , 2018, Journal of Biomedical Semantics.

[17]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[18]  Huajun Chen,et al.  Knowledge-based Transfer Learning Explanation , 2018, KR.

[19]  Stefan Lee,et al.  ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks , 2019, NeurIPS.

[20]  Huajun Chen,et al.  Explainable zero-shot learning via attentive graph convolutional network and knowledge graphs , 2021, Semantic Web.

[21]  Marc'Aurelio Ranzato,et al.  DeViSE: A Deep Visual-Semantic Embedding Model , 2013, NIPS.

[22]  Julian Mendez,et al.  jcel: A Modular Rule-based Reasoner , 2012, ORE.

[23]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[24]  Abhinav Gupta,et al.  Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[25]  Andrew Y. Ng,et al.  Semantic Compositionality through Recursive Matrix-Vector Spaces , 2012, EMNLP.

[26]  Geoffrey E. Hinton,et al.  Zero-shot Learning with Semantic Output Codes , 2009, NIPS.

[27]  Catherine Havasi,et al.  ConceptNet 5.5: An Open Multilingual Graph of General Knowledge , 2016, AAAI.

[28]  Christoph H. Lampert,et al.  Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the Ugly , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Chunyun Zhang,et al.  Generative Adversarial Zero-Shot Relational Learning for Knowledge Graphs , 2020, AAAI.

[30]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Ian Horrocks,et al.  f-SWRL: A Fuzzy Extension of SWRL , 2005, J. Data Semant..