Using Computational Fluid-Dynamics (CFD) for the evaluation of beer pasteurization: effect of orientation of cans

A pasteurizacao dentro da embalagem e o metodo mais usado para a estabilizacao microbiologica de cervejas. A crescente busca por alimentos mais seguros e de melhor qualidade cria a necessidade de melhor entendimento dos processos envolvidos na sua producao. Entretanto, pouco se conhece sobre os perfis de temperatura e velocidade durante o tratamento termico de alimentos liquidos em embalagens comerciais, muitas vezes resultando em processos superdimensionados como garantia de seguranca, porem comprometendo caracteristicas sensoriais e nutricionais do produto e custos do processo. Simulacoes por fluidodinâmica computacional (CFD) tem sido usadas por varios autores na avaliacao desses processos. O presente trabalho teve como objetivo avaliar o efeito da orientacao da embalagem na pasteurizacao de cerveja em uma lata comercial de aluminio por meio de CFD. Simulou-se aquecimento a 60 oC ate 15 UPs (processo convencional de pasteurizacao em cervejas, em que 1 unidade de pasteurizacao (UP) equivale a 1 minuto a 60 oC). Avaliou-se o perfil de temperatura e velocidade das correntes de conveccao ao longo do processo e a variacao das UPs em relacao ao tempo, considerando as latas na posicao convencional, invertida e horizontal. Os perfis de temperatura e velocidade mostraram-se adequados ao esperado segundo dados da literatura. Ao contrario da esterilizacao de alimentos liquidos consistentes em latas conicas, a orientacao da embalagem nao resultou em melhoria no processo.

[1]  A. Kannan,et al.  Heat transfer analysis of canned food sterilization in a still retort , 2008 .

[2]  H. Alpas,et al.  Effects of high hydrostatic pressure on shelf life of lager beer , 2005 .

[3]  Ashwini Kumar,et al.  Transient temperature and velocity profiles in a canned non-Newtonian liquid food during sterilization in a still-cook retort , 1991 .

[4]  M. Franke,et al.  Modelling and Simulation of Pasteurization and Staling Effects During Tunnel Pasteurization of Bottled Beer , 1997 .

[5]  Mrinal Bhattacharya,et al.  Numerical Simulation of Natural Convection Heating of Canned Thick Viscous Liquid Food Products , 1990 .

[6]  H. Carrère,et al.  Yeast cells, beer composition and mean pore diameter impacts on fouling and retention during cross-flow filtration of beer with ceramic membranes , 2002 .

[7]  Peter Richards,et al.  Numerical simulation of natural convection heating of canned food by computational fluid dynamics , 1999 .

[8]  M. Farid,et al.  An investigation of deactivation of bacteria in a canned liquid food during sterilization using computational fluid dynamics (CFD) , 1999 .

[9]  Mohammed M. Farid,et al.  A new computational technique for the estimation of sterilization time in canned food , 2004 .

[10]  Mahesh N. Varma,et al.  CFD studies on natural convective heating of canned food in conical and cylindrical containers , 2006 .

[11]  L. Fillaudeau,et al.  Investigation of Mechanisms Governing Membrane Fouling and Protein Rejection in the Sterile Microfiltration of Beer with an Organic Membrane , 1999 .

[12]  I. Pflug,et al.  Location of the Slowest Heating Zone for Natural‐Convection‐Heating Fluids in Metal Containers , 1989 .

[13]  C. Riverol,et al.  ESTIMATION OF THE OVERALL HEAT TRANSFER COEFFICIENT IN A TUBULAR HEAT EXCHANGER UNDER FOULING USING NEURAL NETWORKS. APPLICATION IN A FLASH PASTEURIZER , 2002 .

[14]  Huajiang Huang,et al.  Thermal Sterilisation of Liquid Foods in a Sealed Container - Developing Simple Correlations to Account for Natural Convection , 2005 .

[15]  R. L. Sani,et al.  FINITE-ELEMENT SIMULATION OF AN IN-PACKAGE PASTEURIZATION PROCESS , 1983 .

[16]  Sandro Campos Amico,et al.  Modeling, simulation and optimization of a beer pasteurization tunnel , 2006 .

[17]  Da-Wen Sun,et al.  Thermal food processing : new technologies and quality issues , 2005 .

[18]  M. Farid,et al.  Thermal sterilization of canned food in a 3-D pouch using computational fluid dynamics , 2001 .

[19]  A. A. Tribst,et al.  Ultra-high pressure homogenization treatment combined with lysozyme for controlling Lactobacillus brevis contamination in model system , 2008 .

[20]  H. Alpas,et al.  Effect of high hydrostatic pressure on quality parameters of lager beer , 2005 .

[21]  A. A. Teixeira,et al.  Numerical Modeling of Natural Convection Heating in Canned Liquid Foods , 1987 .

[22]  S. Buzrul A suitable model of microbial survival curves for beer pasteurization , 2007 .

[23]  D. Sun Modeling Thermal Processing Using Computational Fluid Dynamics (CFD) , 2012 .

[24]  Mohammed M. Farid,et al.  Theoretical and experimental investigation of the thermal inactivation of Bacillus stearothermophilus in food pouches , 2002 .

[25]  Gordon Scott,et al.  The application of computational fluid dynamics in the food industry , 1997 .

[26]  Da-Wen Sun,et al.  Computational fluid dynamics (CFD) ¿ an effective and efficient design and analysis tool for the food industry: A review , 2006 .

[27]  M. Varma,et al.  Enhanced food sterilization through inclination of the container walls and geometry modifications , 2005 .

[28]  Peter Richards,et al.  Numerical simulation of biochemical changes in a viscous liquid canned food during sterilisation using computational fluid dynamics , 2001 .

[29]  K. Dewettinck,et al.  Computational fluid dynamics analysis of combined conductive and convective heat transfer in model eggs , 2004 .

[30]  M. Farid,et al.  Numerical simulation of transient temperature and velocity profiles in a horizontal can during sterilization using computational fluid dynamics , 2002 .

[31]  Ashim K. Datta,et al.  Numerically Predicted Transient Temperature and Velocity Profiles During Natural Convection Heating of Canned Liquid Foods , 1988 .

[32]  Mohammed M. Farid,et al.  Theoretical and experimental investigation of the thermal destruction of Vitamin C in food pouches , 2002 .

[33]  M. Cristianini,et al.  Three-Dimensional Mathematical Modeling of Microbiological Destruction of Bacillus stearothermophilus in Conductive Baby Food Packed in Glass Container , 2005 .

[34]  M. Farid,et al.  Using the computational fluid dynamics to analyze the thermal sterilization of solid–liquid food mixture in cans , 2006 .

[35]  Jorge C. Oliveira,et al.  Influence of the variability of processing factors on the F-value distribution in batch retorts , 2000 .

[36]  Da-Wen Sun,et al.  Applications of computational fluid dynamics (cfd) in the food industry: a review , 2002 .

[37]  G. Folkes PASTEURIZATION OF BEER BY A CONTINUOUS DENSE-PHASE CO2 SYSTEM , 2004 .