Accounting for Model Errors in Ensemble Data Assimilation

This study addresses the issue of model errors with the ensemble Kalman filter. Observations generated from the NCEP‐NCAR reanalysis fields are assimilated into a low-resolution AGCM. Without an effort to account for model errors, the performance of the local ensemble transform Kalman filter (LETKF) is seriously degraded when compared with the perfect-model scenario. Several methods to account for model errors, including model bias and system noise, are investigated. The results suggest that the two pure bias removal methods considered [Dee and Da Silva (DdSM) and low dimensional (LDM)] are not able to beat the multiplicative or additive inflation schemes used to account for the effects of total model errors. In contrast, when the bias removal methods are augmented by additive noise representing random errors (DdSM1 and LDM1), they outperform the pure inflation schemes. Of these augmented methods, the LDM1, where the constant bias, diurnal bias, and state-dependent errors are estimated from a large sample of 6-h forecast errors, gives the best results. The advantage of the LDM1 over other methods is larger in data-sparse regions than in data-dense regions.

[1]  S. Kobayashi,et al.  The JRA-25 Reanalysis , 2007 .

[2]  C. M. Kishtawal,et al.  Multimodel Ensemble Forecasts for Weather and Seasonal Climate , 2000 .

[3]  P. L. Houtekamer,et al.  Ensemble Kalman filtering , 2005 .

[4]  R. Todling,et al.  Data Assimilation in the Presence of Forecast Bias: The GEOS Moisture Analysis , 2000 .

[5]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .

[6]  Dick Dee,et al.  Forecast Model Bias Correction in Ocean Data Assimilation , 2005 .

[7]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[8]  C. Danforth,et al.  Estimating and Correcting Global Weather Model Error , 2007 .

[9]  Istvan Szunyogh,et al.  Local ensemble Kalman filtering in the presence of model bias , 2006 .

[10]  Fuqing Zhang,et al.  Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model , 2006 .

[11]  Fuqing Zhang,et al.  Ensemble‐based simultaneous state and parameter estimation with MM5 , 2006 .

[12]  Fuqing Zhang,et al.  Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part I: Perfect Model Experiments , 2006 .

[13]  Fuqing Zhang,et al.  Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part III: Comparison with 3DVAR in a Real-Data Case Study , 2008 .

[14]  David J. Stensrud,et al.  Surface Data Assimilation Using an Ensemble Kalman Filter Approach with Initial Condition and Model Physics Uncertainties , 2005 .

[15]  Istvan Szunyogh,et al.  A local ensemble transform Kalman filter data assimilation system for the NCEP global model , 2008 .

[16]  Juanzhen Sun,et al.  Impacts of Initial Estimate and Observation Availability on Convective-Scale Data Assimilation with an Ensemble Kalman Filter , 2004 .

[17]  P. Houtekamer,et al.  Ensemble size, balance, and model-error representation in an ensemble Kalman filter , 2002 .

[18]  Ryan D. Torn,et al.  Performance Characteristics of a Pseudo-Operational Ensemble Kalman Filter , 2008 .

[19]  Lippincott Williams Wilkins,et al.  Part I , 1997, Neurology.

[20]  Christian L. Keppenne,et al.  Ensemble Kalman filter assimilation of temperature and altimeter data with bias correction and application to seasonal prediction , 2005 .

[21]  J. Whitaker,et al.  Accounting for the Error due to Unresolved Scales in Ensemble Data Assimilation: A Comparison of Different Approaches , 2005 .

[22]  Thomas M. Hamill,et al.  Ensemble Data Assimilation with the NCEP Global Forecast System , 2008 .

[23]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[24]  James A. Carton,et al.  A Simple Ocean Data Assimilation Analysis of the Global Upper Ocean 1950–95. Part I: Methodology , 2000 .

[25]  M. Corazza,et al.  An implementation of the Local Ensemble Kalman Filter in a quasi geostrophic model and comparison with 3D-Var , 2007 .

[26]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[27]  P. Houtekamer,et al.  An Adaptive Ensemble Kalman Filter , 2000 .

[28]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[29]  M. Buehner,et al.  Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations , 2005 .

[30]  Michael G. Bosilovich,et al.  Results from Global Land-Surface Data Assimilation Methods , 2001 .

[31]  C. Danforth,et al.  Using Singular Value Decomposition to Parameterize State-Dependent Model Errors , 2008 .

[32]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[33]  Takemasa Miyoshi,et al.  ENSEMBLE KALMAN FILTER EXPERIMENTS WITH A PRIMITIVE-EQUATION GLOBAL MODEL , 2005 .

[34]  D. Dee On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation , 1995 .

[35]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .

[36]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[37]  F. Molteni Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multi-decadal experiments , 2003 .