Persistence of tripartite nonlocality for noninertial observers

We consider the behaviour of bipartite and tripartite non-locality between fermionic entangled states shared by observers, one of whom uniformly accelerates. We find that while fermionic entanglement persists for arbitrarily large acceleration, the Bell/CHSH inequalities cannot be violated for sufficiently large but finite acceleration. However the Svetlichny inequality, which is a measure of genuine tripartite non-locality, can be violated for any finite value of the acceleration.

[1]  W. Unruh Notes on black-hole evaporation , 1976 .

[2]  N. Gisin Bell's inequality holds for all non-product states , 1991 .

[3]  H. Fan,et al.  Monogamy inequality in terms of negativity for three-qubit states , 2007, quant-ph/0702127.

[4]  V. Scarani,et al.  Bell-type inequalities to detect true n-body nonseparability. , 2002, Physical review letters.

[5]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[6]  E. Martín-Martínez,et al.  Redistribution of particle and antiparticle entanglement in noninertial frames , 2011, 1102.4759.

[7]  Jing Jiliang Multipartite entanglement of fermionic systems in noninertial frames , 2011 .

[8]  Christopher Isham,et al.  Lectures On Quantum Theory: Mathematical And Structural Foundations , 1995 .

[9]  Hawking radiation for Dirac spinors on the RP 3 geon , 2004 .

[10]  J. Cereceda Three-particle entanglement versus three-particle nonlocality , 2002, quant-ph/0202139.

[11]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[12]  Paul M. Alsing,et al.  Teleportation in a non-inertial frame , 2003 .

[13]  S. Popescu,et al.  Generic quantum nonlocality , 1992 .

[14]  P. Alsing,et al.  Entanglement of Dirac fields in noninertial frames , 2006, quant-ph/0603269.

[15]  Eylee Jung,et al.  Tripartite entanglement in a noninertial frame , 2010, 1010.6154.

[16]  S. Ghose,et al.  Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger-Horne-Zeilinger-class states. , 2008, Physical review letters.

[17]  G J Milburn,et al.  Teleportation with a uniformly accelerated partner. , 2003, Physical review letters.

[18]  R. Mann,et al.  Alice falls into a black hole: entanglement in noninertial frames. , 2004, Physical review letters.

[19]  David Edward Bruschi,et al.  Unruh effect in quantum information beyond the single-mode approximation , 2010, 1007.4670.

[20]  E. Martín-Martínez,et al.  Residual entanglement of accelerated fermions is not nonlocal , 2011, 1107.3235.

[21]  Svetlichny,et al.  Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.

[22]  Torres,et al.  Dirac vacuum: Acceleration and external-field effects. , 1991, Physical review. D, Particles and fields.