The Halo Mass–Temperature Relation for Clusters, Groups, and Galaxies

The halo mass–temperature (M–T) relation for a sample of 216 galaxy clusters, groups, and individual galaxies observed by the Chandra X-ray Observatory is presented. Using accurate spectral measurements of their hot atmospheres, we derive the M–T relation for systems with temperatures ranging between 0.4 and 15.0 keV. We measure the total masses of the clusters, groups, and galaxies at radius R 2500, finding that the M 2500 ∝ T α relation follows a power law with α = 1.65 ± 0.06. Our relation agrees with recent lensing studies of the M–T relation at R 200 and is consistent with self-similar theoretical predictions and recent simulations. This agreement indicates that the M–T relation is weakly affected by nongravitational heating processes. Using lensing masses within R 200 we find M 200–T follows a power law with a slope of 1.61 ± 0.19, consistent with the M 2500–T relation. No evidence for a break or slope change is found in either relation. Potential biases associated with sample selection, evolution, and the assumption of hydrostatic equilibrium that may affect the scaling are examined. No significant impacts attributable to these biases are found. Non-cool-core clusters and early spirals produce higher scatter in the M–T relation than cool-core clusters and elliptical galaxies.

[1]  C. Pichon,et al.  The role of AGN feedback in the structure, kinematics, and evolution of ETGs in Horizon simulations , 2020, Astronomy & Astrophysics.

[2]  I. Babyk X-ray scaling relations of elliptical galaxies , 2019, Advances in Astronomy and Space Physics.

[3]  D. Nagai,et al.  Imprints of mass accretion history on the shape of the intracluster medium and the TX–M relation , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  A. Edge,et al.  Origins of Molecular Clouds in Early-type Galaxies , 2018, The Astrophysical Journal.

[5]  I. Babyk,et al.  NEW APPROACH FOR ANALYSIS OF THE X-RAY DATA IN CORES OF GALAXY CLUSTERS: BINNING ON THE CONCENTRATION RINGS, CONTOUR BINNING, AND WAVELET TRANSFORMS , 2018, Odessa Astronomical Publications.

[6]  I. Babyk Probing the distant galaxy cluster JKCS 041 on the L − T − M scaling relations , 2018 .

[7]  Jonas Le Fevre,et al.  The XXL Survey , 2018, Astronomy & Astrophysics.

[8]  A. Edge,et al.  X-Ray Scaling Relations of Early-type Galaxies , 2018, 1803.00020.

[9]  P. Nulsen,et al.  A Universal Entropy Profile for the Hot Atmospheres of Galaxies and Clusters within R2500 , 2018, The Astrophysical Journal.

[10]  A. Negri,et al.  Active Galactic Nuclei Feedback and the Origin and Fate of the Hot Gas in Early-type Galaxies , 2018, Proceedings of the International Astronomical Union.

[11]  A. Edge,et al.  The Origin of Molecular Clouds in Central Galaxies , 2017, 1710.04664.

[12]  A. Edge,et al.  The Onset of Thermally Unstable Cooling from the Hot Atmospheres of Giant Galaxies in Clusters: Constraints on Feedback Models , 2017, 1704.00011.

[13]  W. Harris,et al.  Galactic Dark Matter Halos and Globular Cluster Populations. III. Extension to Extreme Environments , 2017, 1701.04845.

[14]  P. Nulsen,et al.  A relationship between halo mass, cooling, active galactic nuclei heating and the co-evolution of massive black holes , 2015, 1510.07046.

[15]  David Donovan,et al.  Weighing the giants– V. Galaxy cluster scaling relations , 2016, 1606.03407.

[16]  E. Puchwein,et al.  The effect of AGN feedback on the X-ray morphologies of clusters: Simulations vs. observations , 2016, 1605.06661.

[17]  D. Mota,et al.  Probing modified gravity via the mass-temperature relation of galaxy clusters , 2016, 1603.08662.

[18]  A. Finoguenov,et al.  LoCuSS: Testing hydrostatic equilibrium in galaxy clusters , 2015, 1511.01919.

[19]  N. Okabe,et al.  LoCuSS: weak-lensing mass calibration of galaxy clusters , 2015, 1507.04493.

[20]  N. Clerc,et al.  The XXL Survey - IV. Mass-temperature relation of the bright cluster sample , 2015, 1512.03857.

[21]  A. Boyarsky,et al.  Dark matter: Observational manifestation and experimental searches , 2015 .

[22]  S. Klimanov,et al.  The 2MIG isolated AGNs – I. General and multiwavelength properties of AGNs and host galaxies in the northern sky , 2015 .

[23]  S. Planelles,et al.  Large-Scale Structure Formation: From the First Non-linear Objects to Massive Galaxy Clusters , 2014, 1404.3956.

[24]  E. Choi,et al.  The impact of mechanical AGN feedback on the formation of massive early-type galaxies , 2014, 1403.1257.

[25]  H. Hoekstra,et al.  CFHTLenS: weak lensing calibrated scaling relations for low-mass clusters of galaxies , 2014, 1410.8769.

[26]  T. Reiprich,et al.  Scaling Properties of a Complete X-ray Selected Galaxy Group Sample , 2014, 1409.3845.

[27]  A. Jenkins,et al.  Cosmological simulations of galaxy clusters with feedback from active galactic nuclei : profiles and scaling relations. , 2014, 1409.0723.

[28]  Daniel P. Marrone,et al.  LoCuSS: Hydrostatic mass measurements of the high-LX cluster sample - cross-calibration of Chandra and XMM-Newton , 2014, 1406.6831.

[29]  J. Schaye,et al.  Towards a realistic population of simulated galaxy groups and clusters , 2013, 1312.5462.

[30]  I. Vavilova,et al.  The Chandra X-ray galaxy clusters at z<1.4: constraints on the evolution of LX−T−Mg relations , 2014 .

[31]  S. Ettori The generalized scaling relations for X-ray galaxy clusters: the most powerful mass proxy , 2013, 1307.7157.

[32]  H. Hoekstra,et al.  Scaling Relations for Galaxy Clusters: Properties and Evolution , 2013, 1305.3286.

[33]  H. Hoekstra,et al.  Masses of Galaxy Clusters from Gravitational Lensing , 2013, 1303.3274.

[34]  P. Nulsen,et al.  Mechanical feedback from active galactic nuclei in galaxies, groups and clusters , 2012, 1204.0006.

[35]  P. Coppi,et al.  The polytropic approximation and X-ray scaling relations: constraints on gas and dark matter profiles for galaxy groups and clusters , 2011, 1111.5573.

[36]  S. Borgani,et al.  Cosmological Simulations of Galaxy Clusters , 2009, 0906.4370.

[37]  T. Reiprich,et al.  Testing the low-mass end of X-ray scaling relations with a sample of Chandra galaxy groups , 2010, 1109.6498.

[38]  M. Meneghetti,et al.  Weighing simulated galaxy clusters using lensing and X-ray , 2009, 0912.1343.

[39]  S. Sivanandam,et al.  Enrichment and pre-heating in intragroup gas from galactic outflows , 2008, 0805.1938.

[40]  J. Kneib,et al.  LoCuSS: comparison of observed X-ray and lensing galaxy cluster scaling relations with simulations , 2008, 0802.0770.

[41]  P. Nulsen,et al.  Heating Hot Atmospheres with Active Galactic Nuclei , 2007, 0709.2152.

[42]  A. Morandi,et al.  Entropy profiles in X-ray luminous galaxy clusters at z > 0.1 , 2007, 0706.2971.

[43]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[44]  H. Hoekstra A comparison of weak-lensing masses and X-ray properties of galaxy clusters , 2007, 0705.0358.

[45]  D. Nagai,et al.  Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations , 2006, astro-ph/0609247.

[46]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[47]  Michael A. Nowak,et al.  CIAO: Chandra's data analysis system , 2006, SPIE Astronomical Telescopes + Instrumentation.

[48]  V. Springel,et al.  Physical viscosity in smoothed particle hydrodynamics simulations of galaxy clusters , 2006, astro-ph/0605301.

[49]  D. Nagai,et al.  A New Robust Low-Scatter X-Ray Mass Indicator for Clusters of Galaxies , 2006, astro-ph/0603205.

[50]  L. Moscardini,et al.  Systematics in the X-ray cluster mass estimators , 2006, astro-ph/0602434.

[51]  J. Mohr,et al.  Effects of Mergers and Core Structure on the Bulk Properties of Nearby Galaxy Clusters , 2005, astro-ph/0510064.

[52]  G. Bryan,et al.  Structure Formation , 2005 .

[53]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[54]  H Germany,et al.  The structural and scaling properties of nearby galaxy clusters. II. The M-T relation , 2005, astro-ph/0502210.

[55]  L. Moscardini,et al.  Mismatch between X-Ray and Emission-weighted Temperatures in Galaxy Clusters: Cosmological Implications , 2004, astro-ph/0409650.

[56]  J. Mohr,et al.  K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light , 2004, astro-ph/0408557.

[57]  Padova,et al.  X‐ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation , 2003, astro-ph/0310794.

[58]  T. Ponman,et al.  X-ray scaling properties of early-type galaxies , 2003, astro-ph/0301153.

[59]  T. Kitayama,et al.  Mass-Temperature Relation of Galaxy Clusters: Implications from the Observed Luminosity-Temperature Relation and X-Ray Temperature Function , 2002, astro-ph/0212284.

[60]  A. Kravtsov,et al.  Sample Variance Considerations for Cluster Surveys , 2002, astro-ph/0203169.

[61]  H. M. P. Couchman,et al.  Galaxy Clusters in Hubble Volume Simulations: Cosmological Constraints from Sky Survey Populations , 2001, astro-ph/0110246.

[62]  S. Allen,et al.  The X‐ray virial relations for relaxed lensing clusters observed with Chandra , 2001, astro-ph/0110610.

[63]  Aneta Siemiginowska,et al.  Sherpa: a mission-independent data analysis application , 2001, SPIE Optics + Photonics.

[64]  R. Cen,et al.  Mass-Temperature Relation of Galaxy Clusters: A Theoretical Study , 2001, astro-ph/0105020.

[65]  Haiguang Xu,et al.  The Mass-Temperature Relation of 22 Nearby Clusters , 2001, astro-ph/0101564.

[66]  A. Finoguenov,et al.  Details of the mass-temperature relation for clusters of galaxies , 2000, astro-ph/0010190.

[67]  Bergamo,et al.  A theoretical study of the mass temperature relation for clusters of galaxies , 2002, astro-ph/0205449.

[68]  Xiang-Ping Wu,et al.  Properties of the double β model for intracluster gas , 2000, astro-ph/0006131.

[69]  C. Norman,et al.  Detection of the Entropy of the Intergalactic Medium: Accretion Shocks in Clusters, Adiabatic Cores in Groups , 1999, astro-ph/9907299.

[70]  M. Geller,et al.  The RASSCALS: An X-Ray and Optical Study of 260 Galaxy Groups , 1999, astro-ph/9912121.

[71]  M. Markevitch,et al.  The Cluster M-T Relation from Temperature Profiles Observed with ASCA and ROSAT , 1999, astro-ph/9911369.

[72]  Maxim Markevitch,et al.  The LX-T Relation and Temperature Function for Nearby Clusters Revisited , 1998, astro-ph/9802059.

[73]  R. Mushotzky,et al.  The Luminosity-Temperature Relation at z = 0.4 for Clusters of Galaxies , 1997, astro-ph/9703039.

[74]  H. Ebeling,et al.  A ROSAT survey of Hickson's compact galaxy groups , 1996 .

[75]  N. Kaiser Evolution of Clusters of Galaxies , 1991 .

[76]  Nick Kaiser,et al.  Evolution and clustering of rich clusters , 1986 .