Nanocrystalline oxide supercapacitors

Abstract Two sets of SnO 2 -based supercapacitors (SCs) were synthesized and characterized. The first set, typical of double-layer (DL) capacitance, comprises Sb-doped SnO 2 nanocrystallites synthesized by a sol–gel process. A surface-grafting technique was introduced to delay grain coarsening, giving rise to a maximum capacitance in 1 M KOH (aq) of 16 F g −1 (or 64 F cm −3 ). The second set includes composite electrodes consisting of nanocrystalline SnO 2 and RuO 2 or Fe 3 O 4 nanocrystallites, which are known to exhibit pseudocapacitance. Fe 3 O 4 SnO 2 composite electrodes exhibiting a capacitance of 33 F g −1 (or ∼130 F cm −3 ), at a voltage-sweeping rate of 50 mV s −1 in 1 M Na 2 SO 4(aq) were demonstrated.

[1]  Jim P. Zheng,et al.  A New Charge Storage Mechanism for Electrochemical Capacitors , 1995 .

[2]  N. Wu,et al.  Spontaneous solution-sol-gel process for preparing tin oxide monolith , 1996 .

[3]  N. Wu,et al.  Synthesis and Characterization of Sb-Doped SnO2 Xerogel Electrochemical Capacitor , 2001 .

[4]  N. Wu,et al.  Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides. , 1999, Science.

[5]  N. Wu,et al.  Tin oxide gel shrinkage during CO2 supercritical drying , 1998 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  D. Pletcher,et al.  The preparation and characterization of tin dioxide coated titanium electrodes , 1997 .

[8]  A. Battisti,et al.  Service life of Ti/SnO2–Sb2O5 anodes , 1997 .

[9]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[10]  Y. Tamaura,et al.  Ferrite-Plating in Aqueous Solution: A New Method for Preparing Magnetic Thin Film , 1983 .

[11]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[12]  O. J. Murphy,et al.  The oxygen electrode. Part 8.—Oxygen evolution at ruthenium dioxide anodes , 1977 .

[13]  Y. Murakami,et al.  Dip‐Coated Ru‐V Oxide Electrodes for Electrochemical Capacitors , 1997 .

[14]  Marc A. Anderson,et al.  Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors , 1996 .

[15]  N. Wu,et al.  Preparation of tin oxide gels with versatile pore structures , 1999 .

[16]  Atsushi Ochi,et al.  Large capacitance electric double layer capacitor using activated carbon/carbon composite , 1993 .

[17]  A. Battisti,et al.  Electrochemical properties of Ti/SnO2-Sb2O5 electrodes prepared by the spray pyrolysis technique , 1996 .

[18]  Mitsuhiro Nakamura,et al.  Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors , 1996 .

[19]  James A. Ritter,et al.  Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels , 1999 .

[20]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[21]  K. Kobayakawa,et al.  Electrochemical Behavior of Activated‐Carbon Capacitor Materials Loaded with Ruthenium Oxide , 1999 .

[22]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[23]  B. V. Tilak,et al.  Materials for electrochemical capacitors: Theoretical and experimental constraints , 1996 .

[24]  Nae-Lih Wu,et al.  Evolution in Structural and Optical Properties of Stannic Oxide Xerogel upon Heat Treatment , 2004 .

[25]  S. Morrison Electrochemistry at Semiconductor and Oxidized Metal Electrodes , 1980 .

[26]  B. Conway,et al.  Surface and bulk processes at oxidized iridium electrodes—I. Monolayer stage and transition to reversible multilayer oxide film behaviour , 1983 .

[27]  B. Conway,et al.  The role and utilization of pseudocapacitance for energy storage by supercapacitors , 1997 .

[28]  B. Tilak,et al.  The Structure of the Electrical Double Layer at the Metal-Solution Interface , 1965 .