Mechanisms of metabolic coronary flow regulation.

[1]  J. Polák,et al.  Hypoxia. 4. Hypoxia and ion channel function. , 2011, American journal of physiology. Cell physiology.

[2]  D. Gutterman,et al.  H2O2 Is the Transferrable Factor Mediating Flow-Induced Dilation in Human Coronary Arterioles , 2011, Circulation research.

[3]  Xiaoping Liu,et al.  Mechanisms of nitrite reduction to nitric oxide in the heart and vessel wall. , 2010, Nitric oxide : biology and chemistry.

[4]  H. Shimokawa Hydrogen peroxide as an endothelium-derived hyperpolarizing factor , 2010, Pflügers Archiv - European Journal of Physiology.

[5]  W. Chilian,et al.  Redox-dependent coronary metabolic dilation. , 2007, American journal of physiology. Heart and circulatory physiology.

[6]  Jin Han,et al.  Acute hypoxia induces vasodilation and increases coronary blood flow by activating inward rectifier K+ channels , 2007, Pflügers Archiv - European Journal of Physiology.

[7]  G. Heusch,et al.  Microdialysis-based analysis of interstitial NO in situ: NO synthase-independent NO formation during myocardial ischemia. , 2007, Cardiovascular research.

[8]  J. Tune,et al.  Hydrogen Peroxide: A Feed-Forward Dilator That Couples Myocardial Metabolism to Coronary Blood Flow , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[9]  M. Focardi,et al.  H2O2-induced redox-sensitive coronary vasodilation is mediated by 4-aminopyridine-sensitive K+ channels. , 2006, American journal of physiology. Heart and circulatory physiology.

[10]  M. R. Turner,et al.  Effects of hypoxia, anoxia, and metabolic inhibitors on KATP channels in rat femoral artery myocytes. , 2006, American journal of physiology. Heart and circulatory physiology.

[11]  A. Deussen,et al.  Intact nitric oxide production is obligatory for the sustained flow response during hypercapnic acidosis in guinea pig heart. , 2005, Cardiovascular research.

[12]  A. Ahluwalia,et al.  Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Gutterman,et al.  Mechanism of dilation to reactive oxygen species in human coronary arterioles. , 2003, American journal of physiology. Heart and circulatory physiology.

[14]  L. Kuo,et al.  Hydrogen peroxide induces endothelium-dependent and -independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. , 2003, American journal of physiology. Heart and circulatory physiology.

[15]  Lionel H. Opie,et al.  Heart Physiology: From Cell to Circulation , 2003 .

[16]  J. Wu,et al.  Differential Expression of Kir6.1 and SUR2B mRNAs in the Vasculature of Various Tissues in Rats , 2003, The Journal of Membrane Biology.

[17]  A. Nicolosi,et al.  Mitochondrial Sources of H2O2 Generation Play a Key Role in Flow-Mediated Dilation in Human Coronary Resistance Arteries , 2003, Circulation research.

[18]  Jianping Wu,et al.  Hypercapnic Acidosis Activates KATP Channels in Vascular Smooth Muscles , 2003, Circulation research.

[19]  J. Watanabe,et al.  Impact of hypercholesterolemia on acidosis-induced coronary microvascular dilation , 2003, Basic Research in Cardiology.

[20]  Takashi Saito,et al.  Role for Hydrogen Peroxide in Flow-Induced Dilation of Human Coronary Arterioles , 2003, Circulation research.

[21]  F. Lembeck,et al.  Severe Hypoxia Inhibits Prostaglandin I2 Biosynthesis and Vasodilatory Responses Induced by Ionophore A23187 in the Isolated Rabbit Ear , 2002, Pharmacology.

[22]  H. Maddock,et al.  Effects of adenosine receptor agonists on guinea‐pig isolated working hearts and the role of endothelium and NO , 2002, The Journal of pharmacy and pharmacology.

[23]  I. Fridovich,et al.  Subcellular Distribution of Superoxide Dismutases (SOD) in Rat Liver , 2001, The Journal of Biological Chemistry.

[24]  N. Cui,et al.  Distinct Histidine Residues Control the Acid-induced Activation and Inhibition of the Cloned KATP Channel* , 2001, The Journal of Biological Chemistry.

[25]  J. Headrick,et al.  Functional characterization of coronary vascular adenosine receptors in the mouse , 2001, British journal of pharmacology.

[26]  L. Kuo,et al.  Functional and molecular characterization of receptor subtypes mediating coronary microvascular dilation to adenosine. , 2001, Journal of molecular and cellular cardiology.

[27]  G. Heusch,et al.  Heterogeneity of local myocardial flow and oxidative metabolism. , 2000, American journal of physiology. Heart and circulatory physiology.

[28]  A. Deussen Metabolic flux rates of adenosine in the heart , 2000, Naunyn-Schmiedeberg's Archives of Pharmacology.

[29]  B. Robinson,et al.  Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. , 2000, Free radical biology & medicine.

[30]  J. Shryock,et al.  Role of A2A‐adenosine receptor activation for ATP‐mediated coronary vasodilation in guinea‐pig isolated heart , 2000, British journal of pharmacology.

[31]  E. Feigl,et al.  Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs. , 2000, Circulation.

[32]  R. Paul,et al.  Effects of hypoxia on isometric force, intracellular Ca(2+), pH, and energetics in porcine coronary artery. , 2000, Circulation research.

[33]  W. Jackson Hypoxia Does Not Activate ATP‐Sensitive K+ Channels in Arteriolar Muscle Cells , 2000, Microcirculation.

[34]  J. Phillis,et al.  Mechanisms involved in coronary artery dilatation during respiratory acidosis in the isolated perfused rat heart , 2000, Basic Research in Cardiology.

[35]  W. Abebe,et al.  Antagonism of coronary artery relaxation by adenosine A2A-receptor antagonist ZM241385. , 2000, Journal of cardiovascular pharmacology.

[36]  J. Phillis,et al.  Further evidence for the role of adenosine in hypercapnia/acidosis-evoked coronary flow regulation. , 1999, General pharmacology.

[37]  D. Stepp,et al.  Regulation of shear stress in the canine coronary microcirculation. , 1999, Circulation.

[38]  L. Kuo,et al.  cAMP-independent dilation of coronary arterioles to adenosine : role of nitric oxide, G proteins, and K(ATP) channels. , 1999, Circulation research.

[39]  K. Okumura,et al.  Mechanisms of hypoxic coronary vasodilatation in isolated perfused rat hearts. , 1999, Journal of cardiovascular pharmacology.

[40]  J. Zweier,et al.  Non-enzymatic nitric oxide synthesis in biological systems. , 1999, Biochimica et biophysica acta.

[41]  J. Phillis,et al.  Role of nitric oxide in rat coronary flow regulation during respiratory and metabolic acidosis. , 1999, General pharmacology.

[42]  E. Feigl,et al.  Role of adenosine in local metabolic coronary vasodilation. , 1999, The American journal of physiology.

[43]  H. Ishizaka,et al.  Coronary arteriolar dilation to acidosis: role of ATP-sensitive potassium channels and pertussis toxin-sensitive G proteins. , 1999, Circulation.

[44]  J. Schrader,et al.  Spatial heterogeneity of myocardial perfusion and metabolism , 1998, Basic Research in Cardiology.

[45]  A. Deussen,et al.  Regional myocardial heat-shock protein (HSP70) concentrations under different blood flow conditions , 1998, Pflügers Archiv.

[46]  D. Duncker,et al.  Role of adenosine in the regulation of coronary blood flow in swine at rest and during treadmill exercise. , 1998, American journal of physiology. Heart and circulatory physiology.

[47]  R. Bache,et al.  Acadesine increases blood flow in the collateralized heart during exercise. , 1998, Journal of cardiovascular pharmacology.

[48]  A. Deussen,et al.  Metabolische Aspekte der Myokardischämie , 1998, Zeitschrift für Kardiologie.

[49]  G. Spalluto,et al.  A2A-adenosine receptor reserve for coronary vasodilation. , 1998, Circulation.

[50]  A. Deussen,et al.  Coronary reserve of high- and low-flow regions in the dog heart left ventricle. , 1998, Circulation.

[51]  V. Mutafova-Yambolieva,et al.  Adenosine-induced hyperpolarization in guinea pig coronary artery involves A2b receptors and KATP channels. , 1997, American journal of physiology. Heart and circulatory physiology.

[52]  A. Deussen Local myocardial glucose uptake is proportional to, but not dependent on blood flow , 1997, Pflügers Archiv.

[53]  J. Schrader,et al.  Spatial heterogeneity of blood flow in the dog heart. I. Glucose uptake, free adenosine and oxidative/glycolytic enzyme activity , 1996, Pflügers Archiv.

[54]  X. Yao,et al.  Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney. , 1996, The Journal of clinical investigation.

[55]  M. Nelson,et al.  Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[56]  S. Kalsner Hypoxic relaxation in functionally intact cattle coronary artery segments involves K+ ATP channels. , 1995, The Journal of pharmacology and experimental therapeutics.

[57]  M. Nelson,et al.  ATP-sensitive K+ currents in cerebral arterial smooth muscle: pharmacological and hormonal modulation. , 1995, The American journal of physiology.

[58]  E. Feigl,et al.  EDRF and norepinephrine-induced vasodilation in the canine coronary circulation. , 1995, The American journal of physiology.

[59]  N. Standen,et al.  Activation of ATP‐dependent K+ channels by hypoxia in smooth muscle cells isolated from the pig coronary artery. , 1995, The Journal of physiology.

[60]  D. Lamontagne,et al.  Contribution of prostaglandins in hypoxia-induced vasodilatation in isolated rabbit hearts. Relation to adenosine and KATP channels , 1994, Pflügers Archiv.

[61]  J B Bassingthwaighte,et al.  Regional myocardial flow and capillary permeability-surface area products are nearly proportional. , 1994, The American journal of physiology.

[62]  K. Egashira,et al.  ATP sensitive potassium channels are involved in adenosine A2 receptor mediated coronary vasodilatation in the dog. , 1994, Cardiovascular research.

[63]  G A Gutman,et al.  Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. , 1994, Molecular pharmacology.

[64]  D. Lamontagne,et al.  Adenosine contributes to hypoxia-induced vasodilation through ATP-sensitive K+ channel activation. , 1993, The American journal of physiology.

[65]  R. Bache,et al.  Role of K+ATP channels in coronary vasodilation during exercise. , 1993, Circulation.

[66]  J. Remacle,et al.  Stimulation of prostaglandin synthesis by human endothelial cells exposed to hypoxia. , 1993, The American journal of physiology.

[67]  F. Belloni,et al.  Role of nitric oxide in hypoxic coronary vasodilatation in isolated perfused guinea pig heart. , 1993, The American journal of physiology.

[68]  E. Feigl,et al.  Adrenergic blockade blunts adenosine concentration and coronary vasodilation during hypoxia. , 1992, Circulation research.

[69]  E. Feigl,et al.  Synergistic action of myocardial oxygen and carbon dioxide in controlling coronary blood flow. , 1991, Circulation research.

[70]  H. Kontos,et al.  H2O2 and endothelium-dependent cerebral arteriolar dilation. Implications for the identity of endothelium-derived relaxing factor generated by acetylcholine. , 1990, Hypertension.

[71]  G. Neat,et al.  Interrelations between coronary artery pressure, myocardial metabolism and coronary blood flow. , 1990, Journal of molecular and cellular cardiology.

[72]  J. Daut,et al.  Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. , 1990, Science.

[73]  C. Eastham,et al.  Heterogeneous microvascular coronary alpha-adrenergic vasoconstriction. , 1989, Circulation research.

[74]  J. Schrader,et al.  Formation of S-adenosylhomocysteine in the heart. II: A sensitive index for regional myocardial underperfusion. , 1988, Circulation research.

[75]  G. Merrill,et al.  Coronary vasodilation during global myocardial hypoxia: effects of adenosine deaminase. , 1988, The American journal of physiology.

[76]  J. Ross,et al.  Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion in dogs. , 1987, Journal of the American College of Cardiology.

[77]  J. Schrader,et al.  Contribution of coronary endothelial cells to cardiac adenosine production , 1986, Pflügers Archiv.

[78]  E. Feigl,et al.  Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. , 1985, The American journal of physiology.

[79]  E. Myhre,et al.  Effects of carbon dioxide and pH on myocardial blood-flow and metabolism in the dog. , 1985, Clinical physiology.

[80]  J B Bassingthwaighte,et al.  Stability of heterogeneity of myocardial blood flow in normal awake baboons. , 1985, Circulation research.

[81]  R. Bache,et al.  Effect of indomethacin on coronary blood flow during graded treadmill exercise in the dog. , 1984, The American journal of physiology.

[82]  R. Busse,et al.  The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia , 1984, Pflügers Archiv.

[83]  Syed Jamal Mustafa,et al.  Effect of Perfusate pH on Coronary Flow and Adenosine Release in Isolated Rabbit Heart 1 2 , 1984, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[84]  K. Ichihara,et al.  Is ischemia-induced pH decrease of dog myocardium respiratory or metabolic acidosis? , 1984, The American journal of physiology.

[85]  G. Radda,et al.  A 31P-NMR study of the effects of reflow on the ischaemic rat heart. , 1981, Biochimica et biophysica acta.

[86]  H. Bardenheuer,et al.  Assessment of vasoactive metabolites released from the isolated guinea pig during heart hypoxia and β-adrenergic stimulation , 1981, Basic Research in Cardiology.

[87]  D. Stowe Heart bioassay of effluent of isolated, perfused guinea pig hearts to examine the role of metabolites regulating coronary flow during hypoxia , 1981, Basic Research in Cardiology.

[88]  R. Kerber,et al.  Spatial and temporal heterogeneity of left ventricular perfusion in awake dogs. , 1977, American heart journal.

[89]  S. Kalsner The effect of hypoxia on prostaglandin output and on tone in isolated coronary arteries. , 1977, Canadian journal of physiology and pharmacology.

[90]  B. Pitt,et al.  Changes in Intramyocardial ST Segment Voltage and Gas Tensions with Regional Myocardial Ischemia in the Dog , 1975, Circulation research.

[91]  R. Berne Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. , 1963, The American journal of physiology.

[92]  Bunyen Teng,et al.  Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology. , 2009, Handbook of experimental pharmacology.

[93]  A. Deussen,et al.  Coronary flow regulation in mouse heart during hypercapnic acidosis: role of NO and its compensation during eNOS impairment. , 2008, Cardiovascular research.

[94]  D. Duncker,et al.  Acute adaptations of the coronary circulation to exercise , 2007, Cell Biochemistry and Biophysics.

[95]  A. Deussen,et al.  Myocardial ferritin content is closely related to the degree of ischaemia. , 2004, Acta physiologica Scandinavica.

[96]  E. Gerlach,et al.  Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung für die Coronardurchblutung , 2004, Naturwissenschaften.

[97]  I. Tsangaris,et al.  Coronary sinus venoarterial CO2 difference in different hemodynamic states. , 2004, Acta anaesthesiologica Belgica.

[98]  J. López-Barneo,et al.  Reduction of Ca(2+) channel activity by hypoxia in human and porcine coronary myocytes. , 2002, Cardiovascular research.

[99]  E. Feigl,et al.  Adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise. , 2000, American journal of physiology. Heart and circulatory physiology.

[100]  A. Deussen,et al.  [Metabolic aspects of myocardial ischemia]. , 1998, Zeitschrift fur Kardiologie.

[101]  A. Szewczyk,et al.  ATP-regulated potassium channel blocker, glibenclamide, uncouples mitochondria. , 1997, Polish journal of pharmacology.

[102]  G. J. Crystal,et al.  Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis. , 1995, The American journal of physiology.

[103]  R. Bache,et al.  Endogenous adenosine mediates coronary vasodilation during exercise after K(ATP)+ channel blockade. , 1995, The Journal of clinical investigation.

[104]  P. Ouyang,et al.  Effect of blockade of the ATP-sensitive potassium channel on metabolic coronary vasodilation in the dog. , 1993, Pharmacology.

[105]  G. Heusch,et al.  Endothelial and neuro-humoral control of coronary blood flow in health and disease. , 1990, Reviews of physiology, biochemistry and pharmacology.

[106]  E. Feigl,et al.  Coronary physiology. , 1983, Physiological reviews.