Through-focus or volumetric type of optical imaging methods: a review

Abstract. In recent years, the use of through-focus (TF) or volumetric type of optical imaging has gained momentum in several areas such as biological imaging, microscopy, adaptive optics, material processing, optical data storage, and optical inspection. We provide a review of basic TF optical methods highlighting their design, major unique characteristics, and application space.

[1]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[2]  Shin-Tson Wu,et al.  Variable-focus liquid lens. , 2007, Optics express.

[3]  3D single-molecule super-resolution microscopy with a tilted light sheet , 2017 .

[4]  Brian Glennon,et al.  Calibration of a digital in-line holographic microscopy system: depth of focus and bioprocess analysis. , 2013, Applied optics.

[5]  M. Minsky Memoir on inventing the confocal scanning microscope , 1988 .

[6]  Ravikiran Attota,et al.  Through-focus scanning-optical-microscope imaging method for nanoscale dimensional analysis. , 2008, Optics letters.

[7]  J. Dobrucki,et al.  Method of calibration of a fluorescence microscope for quantitative studies , 2011, Journal of microscopy.

[8]  Richard Kasica,et al.  Nanoparticle size determination using optical microscopes , 2014 .

[9]  Katharine Grieve,et al.  Full-field optical coherence microscopy , 2004, Advanced Laser Technologies.

[10]  Brian P. Mehl,et al.  Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging. , 2016, Biomedical optics express.

[11]  Benjamin Bunday,et al.  Patterned Defect & CD Metrology by TSOM Beyond the 22 nm Node | NIST , 2012 .

[12]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[13]  Dan Liang,et al.  Bionic optical imaging system with aspheric solid–liquid mixed variable-focus lens , 2016 .

[14]  Richard M. Silver,et al.  Nanometrology using a through-focus scanning optical microscopy method , 2011 .

[15]  Pietro Ferraro,et al.  Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. , 2003, Applied optics.

[16]  F. Helmchen,et al.  Imaging cellular network dynamics in three dimensions using fast 3D laser scanning , 2007, Nature Methods.

[17]  Alexander Y Katsov,et al.  Fast and sensitive multi-color 3D imaging using aberration-corrected multi-focus microscopy , 2012, Nature Methods.

[18]  Joerg Bewersdorf,et al.  Optical nanoscopy: from acquisition to analysis. , 2012, Annual review of biomedical engineering.

[19]  Benjamin Bunday,et al.  Use of TSOM for sub-11nm node pattern defect detection and HAR features , 2013, Advanced Lithography.

[20]  Jennifer C. Waters,et al.  Quantitative imaging in cell biology , 2014 .

[21]  Ravi Kiran Attota Step beyond Kohler illumination analysis for far-field quantitative imaging: angular illumination asymmetry (ANILAS) maps. , 2016, Optics express.

[22]  Jerry Chao,et al.  Designing the focal plane spacing for multifocal plane microscopy. , 2014, Optics express.

[23]  Jordan R. Myers,et al.  Ultra-High Resolution 3D Imaging of Whole Cells , 2016, Cell.

[24]  Benjamin Bunday,et al.  Patterned defect and CD metrology by TSOM beyond the 22-nm node , 2012, Advanced Lithography.

[25]  T. Holy,et al.  Fast Three-Dimensional Fluorescence Imaging of Activity in Neural Populations by Objective-Coupled Planar Illumination Microscopy , 2008, Neuron.

[26]  András E. Vladár,et al.  A method to determine the number of nanoparticles in a cluster using conventional optical microscopes , 2015 .

[27]  Egon Marx,et al.  New method to enhance overlay tool performance , 2003, SPIE Advanced Lithography.

[28]  Melania Paturzo,et al.  Extended focus imaging in digital holographic microscopy: a review , 2014 .

[29]  Jun Ho Lee,et al.  Tip/tilt-compensated through-focus scanning optical microscopy , 2016, SPIE/COS Photonics Asia.

[30]  S. Kou,et al.  Imaging in digital holographic microscopy. , 2007, Optics express.

[31]  S. Ram,et al.  Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions , 2004, IEEE Transactions on NanoBioscience.

[32]  M. Durst,et al.  Simultaneous spatial and temporal focusing for axial scanning. , 2006, Optics express.

[33]  X. Bai,et al.  Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes. , 2011, Optics express.

[34]  Ronald G. Dixson,et al.  Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes , 2014 .

[35]  Gert-Jan Bakker,et al.  Third harmonic generation microscopy of cells and tissue organization , 2016, Journal of Cell Science.

[36]  Shin‐Tson Wu,et al.  Variable-focus liquid lens by changing aperture , 2005 .

[37]  Robert M Zucker,et al.  Evaluation of confocal microscopy system performance. , 2001, Methods in molecular biology.

[38]  Pieter Wesseling,et al.  Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment , 2017, Angiogenesis.

[39]  Renjing Pei,et al.  Three-dimensional light field microscope based on a lenslet array , 2017 .

[40]  Ravikiran Attota Noise analysis for through-focus scanning optical microscopy. , 2016, Optics letters.

[41]  Vidya Venkatachalam,et al.  Extended depth of field imaging for high speed cell analysis , 2007, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[42]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[43]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[44]  Haesung Park,et al.  Optical microscope illumination analysis using through-focus scanning optical microscopy. , 2017, Optics letters.

[45]  G. C. Knollman,et al.  Variable‐Focus Liquid‐Filled Hydroacoustic Lens , 1971 .

[46]  Hyeonggon Kang,et al.  Parameter optimization for through-focus scanning optical microscopy. , 2016, Optics express.

[47]  Tonny Lagerweij,et al.  Three-dimensional histochemistry and imaging of human gingiva , 2018, Scientific Reports.

[48]  Joseph Rosen,et al.  Fresnel incoherent correlation holography (FINCH): a review of research , 2012 .

[49]  Kayvan Forouhesh Tehrani,et al.  Fast axial scanning for 2-photon microscopy using liquid lens technology , 2017, BiOS.

[50]  Egon Marx,et al.  Scatterfield microscopy for extending the limits of image-based optical metrology. , 2007, Applied optics.

[51]  W. F. Floyd Nobel Symposium , 1967, Nature.

[52]  Martin J. Booth,et al.  Rapid adaptive remote focusing microscope for sensing of volumetric neural activity , 2017, Biomedical optics express.

[53]  Katsumasa Fujita,et al.  Follow-up review: recent progress in the development of super-resolution optical microscopy. , 2016, Microscopy.

[54]  Daisuke Koyama,et al.  Compact, high-speed variable-focus liquid lens using acoustic radiation force. , 2010, Optics express.

[55]  Jeremy Freeman,et al.  Technologies for imaging neural activity in large volumes , 2016, Nature Neuroscience.

[56]  Michael J Rust,et al.  Sub-Diffraction-Limit Imaging with Stochastic Optical Reconstruction Microscopy , 2010 .

[57]  Bahram Javidi,et al.  Extended focused image in microscopy by digital Holography. , 2005, Optics express.

[58]  Egon Marx,et al.  High-resolution optical overlay metrology , 2004, SPIE Advanced Lithography.

[59]  Dong Liang,et al.  Variable-focus cylindrical liquid lens array , 2013, Other Conferences.

[60]  Henrik Flyvbjerg,et al.  “Calibration-on-the-spot”: How to calibrate an EMCCD camera from its images , 2016, Scientific Reports.

[61]  S. Doose Trends in biological optical microscopy. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[62]  John T Elliott,et al.  An automated protocol for performance benchmarking a widefield fluorescence microscope , 2014, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[63]  Ronald G. Dixson,et al.  Optical critical dimension measurement and illumination analysis using the through-focus focus metric , 2006, SPIE Advanced Lithography.

[64]  T. Wilson,et al.  An optical technique for remote focusing in microscopy , 2008 .

[65]  Hans Zappe,et al.  Materials, effects and components for tunable micro‐optics , 2007 .

[66]  H. Oku,et al.  Rapid Liquid Variable-Focus Lens with 2-ms Response , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[67]  R. Zucker Quality assessment of confocal microscopy slide‐based systems: Instability , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[68]  R. Zenobi Analytical tools for the nano world , 2008, Analytical and bioanalytical chemistry.

[69]  Ravikiran Attota,et al.  Optical microscope angular illumination analysis. , 2012, Optics express.

[70]  Hiromasa Oku,et al.  Paraxial ray solution for liquid-filled variable focus lenses , 2017 .

[71]  Matthew D. Lew,et al.  Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy. , 2015, Optica.

[72]  Sergey Koptyaev,et al.  Motion-free all optical inspection system for nanoscale topology control. , 2014, Optics express.

[73]  Alberto Diaspro,et al.  The 2015 super-resolution microscopy roadmap , 2015, Journal of Physics D: Applied Physics.

[74]  Rene A. Claus,et al.  Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes. , 2014, Optics express.

[75]  Etienne Cuche,et al.  Extended depth-of-focus by digital holographic microscopy. , 2010, Optics letters.

[76]  Tobias M. P. Hartwich,et al.  Video-rate nanoscopy using sCMOS camera- specific single-molecule localization algorithms , 2013 .

[77]  Caglar Ataman,et al.  Miniaturized variable-focus objective employing a liquid-filled tunable aspherical lens , 2017 .

[78]  Rob Ilic,et al.  MultiFocus Polarization Microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously. , 2015, Optics express.

[79]  Balázs Rózsa,et al.  Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes , 2012, Nature Methods.

[80]  Kyle M. Douglass,et al.  Super-resolution imaging of multiple cells by optimised flat-field epi-illumination , 2016, Nature Photonics.

[81]  Marc Levoy,et al.  Light field microscopy , 2006, ACM Trans. Graph..

[82]  Sergey Koptyaev,et al.  Through-focus scanning optical microscopy (TSOM) considering optical aberrations: practical implementation. , 2015, Optics express.

[83]  Richard M. Silver,et al.  Application of through-focus focus-metric analysis in high resolution optical metrology , 2005, SPIE Advanced Lithography.

[84]  Petar N Petrov,et al.  3D single-molecule super-resolution microscopy with a tilted light sheet , 2017, Nature Communications.

[85]  Hui Zhou,et al.  Optical volumetric inspection of sub-20nm patterned defects with wafer noise , 2014, Advanced Lithography.

[86]  Erik Novak,et al.  TSOM method for semiconductor metrology , 2011, Advanced Lithography.

[87]  S Y Oh,et al.  Method for optical inspection of nanoscale objects based upon analysis of their defocused images and features of its practical implementation. , 2013, Optics express.

[88]  E A Patterson,et al.  Three‐dimensional automated nanoparticle tracking using Mie scattering in an optical microscope , 2011, Journal of microscopy.

[89]  Ravi Kiran Attota,et al.  Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy. , 2016, Optics express.

[90]  Alexander Jesacher,et al.  Enhancing diffractive multi-plane microscopy using colored illumination. , 2013, Optics express.

[91]  N. Davidson,et al.  Acousto-optic lens with very fast focus scanning. , 2001, Optics letters.

[92]  Martin J. Booth,et al.  Analysis of the Three-Dimensional Focal Positioning Capability of Adaptive Optic Elements , 2013 .

[93]  Siyuan Dong,et al.  Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. , 2014, Optics express.

[94]  E. Patterson,et al.  Optical signatures of small nanoparticles in a conventional microscope. , 2008, Small.

[95]  Leslie J. Allen,et al.  Phase retrieval from series of images obtained by defocus variation , 2001 .

[96]  J. Huisken,et al.  A guide to light-sheet fluorescence microscopy for multiscale imaging , 2017, Nature Methods.

[97]  S. Usha,et al.  Through Focus Optical Imaging Technique To Analyze Variations In Nano-Scale Indents , 2013 .

[98]  A. Boccara,et al.  High-resolution full-field optical coherence tomography with a Linnik microscope. , 2002, Applied optics.

[99]  Barry R. Masters,et al.  Quantitative Phase Imaging of Cells and Tissues , 2012 .

[100]  Binzhen Zhang,et al.  Variable-Focus Liquid Lens Integrated with a Planar Electromagnetic Actuator , 2016, Micromachines.

[101]  Y. Shechtman,et al.  Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking. , 2017, Chemical reviews.

[102]  Benjamin Bunday,et al.  Critical dimension metrology by through-focus scanning optical microscopy beyond the 22 nm node , 2013 .

[103]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.