Convex-Round and Concave-Round Graphs

We introduce two new classes of graphs which we call convex-round, respectively concave-round graphs. Convex-round (concave-round) graphs are those graphs whose vertices can be circularly enumerated so that the (closed) neighborhood of each vertex forms an interval in the enumeration. Hence the two classes transform into each other by taking complements. We show that both classes of graphs have nice structural properties. We observe that the class of concave-round graphs properly contains the class of proper circular arc graphs and, by a result of Tucker [ Pacific J. Math., 39 (1971), pp. 535--545], is properly contained in the class of general circular arc graphs. We point out that convex-round and concave-round graphs can be recognized in O(n+m) time (here n denotes the number of vertices and m the number of edges of the graph in question). We show that the chromatic number of a graph which is convex-round (concave-round) can be found in time O(n+m) (O(n2)). We describe optimal O(n+m) time algorithms for finding a maximum clique, a maximum matching, and a Hamiltonian cycle (if one exists) for the class of convex-round graphs. Finally, we pose a number of open problems and conjectures concerning the structure and algorithmic properties of the two new classes and a related third class of graphs.

[1]  Krzysztof Diks,et al.  Parallel Maximum Independent Set in Convex Bipartite Graphs , 1996, Inf. Process. Lett..

[2]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[3]  Xiaotie Deng,et al.  Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..

[4]  Norbert Blum,et al.  Circular Convex Bipartite Graphs: Maximum Matching and Hamiltonian Circuits , 1995, Inf. Process. Lett..

[5]  Gen-Huey Chen,et al.  Efficient Parallel Algorithms for Doubly Convex-Bipartite Graphs , 1995, Theor. Comput. Sci..

[6]  Harold Neville Vazeille Temperley,et al.  Graph theory and applications , 1981 .

[7]  Dale Skrien,et al.  A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular-arc graphs, and nested interval graphs , 1982, J. Graph Theory.

[8]  Julian Scott Yeomans,et al.  A linear time algorithm for maximum matchings in convex, bipartite graphs☆ , 1996 .

[9]  Wei-Kuan Shih,et al.  An O(n² log n) Algorithm for the Hamiltonian Cycle Problem on Circular-Arc Graphs , 1992, SIAM J. Comput..

[10]  Wen-Lian Hsu,et al.  An O(n1.5) algorithm to color proper circular arcs , 1989, Discret. Appl. Math..

[11]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[12]  Y. Daniel Liang,et al.  Finding a Maximum Matching in a Circular-Arc Graph , 1993, Inf. Process. Lett..

[13]  Maw-Shang Chang,et al.  Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs , 1997, Acta Informatica.

[14]  Jørgen Bang-Jensen,et al.  Local Tournaments and Proper Circular Arc Gaphs , 1990, SIGAL International Symposium on Algorithms.

[15]  J. Mark Keil Finding Hamiltonian Circuits in Interval Graphs , 1985, Inf. Process. Lett..

[16]  Peter Damaschke,et al.  Domination in Convex and Chordal Bipartite Graphs , 1990, Inf. Process. Lett..

[17]  Uppaluri S. R. Murty,et al.  Graph Theory with Applications , 1978 .

[18]  Binay K. Bhattacharya,et al.  An O(m + n log n) Algorithm for the Maximum-Clique Problem in Circular-Arc Graphs , 1997, J. Algorithms.

[19]  Susanne E. Hambrusch,et al.  Finding Maximum Cliques on Circular-Arc Graphs , 1987, Inf. Process. Lett..

[20]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[21]  F. Glover Maximum matching in a convex bipartite graph , 1967 .

[22]  A. Tucker,et al.  Matrix characterizations of circular-arc graphs , 1971 .

[23]  Wen-Lian Hsu,et al.  Linear Time Algorithms on Circular-Arc Graphs , 1991, Inf. Process. Lett..

[24]  Jeremy P. Spinrad,et al.  An O(n2 algorithm for circular-arc graph recognition , 1993, SODA '93.

[25]  Jørgen Bang-Jensen,et al.  Locally semicomplete digraphs: A generalization of tournaments , 1990, J. Graph Theory.

[26]  Udi Manber,et al.  Introduction to algorithms , 1989 .

[27]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[28]  K. Stoffers Scheduling of traffic lights—A new approach☆ , 1968 .

[29]  Pavol Hell,et al.  A Linear Algorithm for Maximum Weight Cliques in Proper Circular Arc Graphs , 1996, SIAM J. Discret. Math..

[30]  Jing Huang,et al.  On the Structure of Local Tournaments , 1995, J. Comb. Theory, Ser. B.