Manufacturing 100‐µm‐thick silicon solar cells with efficiencies greater than 20% in a pilot production line

Reducing wafer thickness while increasing power conversion efficiency is the most effective way to reduce cost per Watt of a silicon photovoltaic module. Within the European project 20 percent efficiency on less than 100-mu m-thick, industrially feasible crystalline silicon solar cells ("20pl mu s"), we study the whole process chain for thin wafers, from wafering to module integration and life-cycle analysis. We investigate three different solar cell fabrication routes, categorized according to the temperature of the junction formation process and the wafer doping type: p-type silicon high temperature, n-type silicon high temperature and n-type silicon low temperature. For each route, an efficiency of 19.5% or greater is achieved on wafers less than 100 mu m thick, with a maximum efficiency of 21.1% on an 80-mu m-thick wafer. The n-type high temperature route is then transferred to a pilot production line, and a median solar cell efficiency of 20.0% is demonstrated on 100-mu m-thick wafers. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

[1]  C. Ballif,et al.  Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment , 2011 .

[2]  F. Granek,et al.  Analyzing the effects of front-surface fields on back-junction silicon solar cells using the charge-collection probability and the reciprocity theorem , 2008 .

[3]  Andrew G. Glen,et al.  APPL , 2001 .

[4]  Ralf Preu,et al.  Laser‐fired rear contacts for crystalline silicon solar cells , 2002 .

[5]  C. Battaglia,et al.  Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells , 2013 .

[6]  D. Pysch,et al.  Amorphous silicon carbide heterojunction solar cells on p-type substrates , 2011 .

[7]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[8]  C. Ballif,et al.  Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Cells With Dielectric/Metal Rear Reflectors , 2013, IEEE Journal of Photovoltaics.

[9]  A. Cuevas The effect of emitter recombination on the effective lifetime of silicon wafers , 1999 .

[10]  A. Floren,et al.  ' " ' " ' " . " ' " " " " " ' " ' " " " " " : ' " 1 , 2001 .

[11]  D. Biro,et al.  Aluminum Alloying in Local Contact Areas on Dielectrically Passivated Rear Surfaces of Silicon Solar Cells , 2011, IEEE Electron Device Letters.

[12]  A. Cuevas,et al.  General parameterization of Auger recombination in crystalline silicon , 2002 .

[13]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[14]  Christophe Ballif,et al.  Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells , 2013 .

[15]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[16]  C. Ballif,et al.  The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality , 2010 .

[17]  S. Glunz,et al.  Nickel-plated Front Contacts for Front and Rear Emitter Silicon Solar Cells , 2013 .

[18]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[19]  F. A. Rubinelli,et al.  Amorphous Silicon Carbide/Crystalline Silicon Heterojunction Solar Cells: A Comprehensive Study of the Photocarrier Collection , 1998 .

[20]  C. Ballif,et al.  Current Losses at the Front of Silicon Heterojunction Solar Cells , 2012, IEEE Journal of Photovoltaics.

[21]  E. Yablonovitch Statistical ray optics , 1982 .