Self-illuminating quantum dot conjugates for in vivo imaging

Fluorescent semiconductor quantum dots hold great potential for molecular imaging in vivo. However, the utility of existing quantum dots for in vivo imaging is limited because they require excitation from external illumination sources to fluoresce, which results in a strong autofluorescence background and a paucity of excitation light at nonsuperficial locations. Here we present quantum dot conjugates that luminesce by bioluminescence resonance energy transfer in the absence of external excitation. The conjugates are prepared by coupling carboxylate-presenting quantum dots to a mutant of the bioluminescent protein Renilla reniformis luciferase. We show that the conjugates emit long-wavelength (from red to near-infrared) bioluminescent light in cells and in animals, even in deep tissues, and are suitable for multiplexed in vivo imaging. Compared with existing quantum dots, self-illuminating quantum dot conjugates have greatly enhanced sensitivity in small animal imaging, with an in vivo signal-to-background ratio of > 103 for 5 pmol of conjugate.

[1]  J. Jaiswal,et al.  Potentials and pitfalls of fluorescent quantum dots for biological imaging. , 2004, Trends in cell biology.

[2]  Abhijit De,et al.  Noninvasive imaging of protein‐protein interactions from live cells and living subjects using bioluminescence resonance energy transfer , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  Nicholas A. Kotov,et al.  Albumin−CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect , 2001 .

[4]  D A Benaron,et al.  Tissue Optics , 1997, Science.

[5]  David K. Stevenson,et al.  Bioluminescent indicators in living mammals , 1998, Nature Medicine.

[6]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[7]  Osamu Shimomura,et al.  BIOLUMINESCENCE , 1983 .

[8]  S. Gambhir,et al.  Molecular imaging in living subjects: seeing fundamental biological processes in a new light. , 2003, Genes & development.

[9]  Igor L. Medintz,et al.  A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  B. Rice,et al.  Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. , 2004, Molecular imaging.

[11]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[12]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[13]  Shimon Weiss,et al.  Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. , 2004, Journal of the American Chemical Society.

[14]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[15]  Igor L. Medintz,et al.  Can luminescent quantum dots be efficient energy acceptors with organic dye donors? , 2005, Journal of the American Chemical Society.

[16]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[17]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[18]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[19]  William W. Ward,et al.  ENERGY TRANSFER VIA PROTEIN‐PROTEIN INTERACTION IN RENILLA BIOLUMINESCENCE , 1978 .

[20]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[21]  Moungi G. Bawendi,et al.  On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots , 2002 .

[22]  C. Contag,et al.  Advances in in vivo bioluminescence imaging of gene expression. , 2002, Annual review of biomedical engineering.

[23]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[24]  S. Gambhir,et al.  Optical imaging of Renilla luciferase reporter gene expression in living mice , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[26]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .