Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and a Gaussian bias

An efficient concerted rotation algorithm for use in Monte Carlo statistical mechanics simulations of polypeptides is reported that includes flexible bond and dihedral angles. A Gaussian bias is applied with driver bond and dihedral angles to optimize the sampling efficiency. Jacobian weighting is required in the Metropolis test to correct for imbalances in resultant transition probabilities. Testing of the methodology includes Monte Carlo simulations for polyalanines with 8–14 residues and a 36-residue protein as well as a search to find the lowest-energy conformer of the pentapeptide Met-enkephalin. The results demonstrate the formal correctness and efficiency of the method.

[1]  Michael W. Deem,et al.  A configurational bias Monte Carlo method for linear and cyclic peptides , 1996, cond-mat/9709330.

[2]  J. Straub,et al.  Direct computation of long time processes in peptides and proteins: Reaction path study of the coil‐to‐helix transition in polyalanine , 1999, Proteins.

[3]  Ernst-Walter Knapp,et al.  Polypeptide folding with off-lattice Monte Carlo dynamics: the method , 1996, European Biophysics Journal.

[4]  Robert E. Bruccoleri,et al.  Chain closure with bond angle variations , 1985 .

[5]  N. Go,et al.  Ring Closure and Local Conformational Deformations of Chain Molecules , 1970 .

[6]  R. L. Baldwin,et al.  Helix propensities of the amino acids measured in alanine‐based peptides without helix‐stabilizing side‐chain interactions , 1994, Protein science : a publication of the Protein Society.

[7]  W. Goddard,et al.  Kinetic steps for α‐helix formation , 1998 .

[8]  T. Yamato,et al.  Molecular Dynamics of a 15-Residue Poly(l-alanine) in Water: Helix Formation and Energetics , 1999 .

[9]  Alfred Uhlherr,et al.  Monte Carlo Conformational Sampling of the Internal Degrees of Freedom of Chain Molecules , 2000 .

[10]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[11]  E. Knapp Long time dynamics of a polymer with rigid body monomer units relating to a protein model: Comparison with the rouse model , 1992 .

[12]  E. Knapp,et al.  Folding Pathways of a Helix−Turn−Helix Model Protein , 1997, physics/9706018.

[13]  Knapp,et al.  Protein dynamics with off-lattice Monte Carlo moves. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  W. C. Still,et al.  The GB/SA Continuum Model for Solvation. A Fast Analytical Method for the Calculation of Approximate Born Radii , 1997 .

[15]  G. Hummer,et al.  Conformational diffusion and helix formation kinetics. , 2000, Physical review letters.

[16]  O. Becker,et al.  Solvent effects on the energy landscapes and folding kinetics of polyalanine , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Theodorou,et al.  A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses , 1993 .

[18]  J. Ilja Siepmann,et al.  Self-Adapting Fixed-End-Point Configurational-Bias Monte Carlo Method for the Regrowth of Interior Segments of Chain Molecules with Strong Intramolecular Interactions , 2000 .

[19]  Juan J. de Pablo,et al.  Extended continuum configurational bias Monte Carlo methods for simulation of flexible molecules , 1995 .

[20]  G. Hummer,et al.  Helix nucleation kinetics from molecular simulations in explicit solvent , 2001, Proteins.

[21]  Michele Vendruscolo,et al.  Modified configurational bias Monte Carlo method for simulation of polymer systems , 1997 .

[22]  H. Wako,et al.  Monte Carlo study on local and small-amplitude conformational fluctuation in hen egg white lysozyme. , 2009, International journal of peptide and protein research.

[23]  David J. Wales,et al.  Energy landscapes of model polyalanines , 2002 .

[24]  Paul T. Matsudaira,et al.  NMR structure of the 35-residue villin headpiece subdomain , 1997, Nature Structural Biology.

[25]  E. Knapp,et al.  An energy function for dynamics simulations of polypeptides in torsion angle space , 1998 .

[26]  Michael W. Deem,et al.  Efficient Monte Carlo methods for cyclic peptides , 1999 .

[27]  Yuko Okamoto,et al.  α-Helix propensities of homo-oligomers in aqueous solution studied by multicanonical algorithm , 1999 .

[28]  Aaron R. Dinner,et al.  Local deformations of polymers with nonplanar rigid main‐chain internal coordinates , 2000 .

[29]  Fernando A. Escobedo,et al.  A configurational-bias approach for the simulation of inner sections of linear and cyclic molecules , 2000 .

[30]  G. Favrin,et al.  Monte Carlo update for chain molecules: Biased Gaussian steps in torsional space , 2001, cond-mat/0103580.

[31]  Ernst-Walter Knapp,et al.  Off‐lattice Monte Carlo method with constraints: Long‐time dynamics of a protein model without nonbonded interactions , 1993, J. Comput. Chem..