Intermolecular interactions in solution: elucidating the influence of the solvent.

A new approach for the analysis of intermolecular interactions in a solution is proposed. The changes in the interaction energy components due to the solvent effects are estimated on the basis of the interaction energy calculated in the presence of the electric field induced in a polarizable medium, or in the field of the effective fragment potentials. Obtained results indicate a significant increase in stabilization resulting from electrostatic interactions as a result of the cooperative interactions between interacting subsystems and solvent molecules.

[1]  Mati Karelson,et al.  Theoretical treatment of solvent effects on electronic spectroscopy , 1992 .

[2]  Benedetta Mennucci,et al.  New applications of integral equations methods for solvation continuum models: ionic solutions and liquid crystals , 1998 .

[3]  Yi Luo,et al.  Acetonitrile: A critical test case for solvent induced hyperpolarizabilities obtained by the reaction field model , 1997 .

[4]  Sotiris S. Xantheas,et al.  Ab initio studies of cyclic water clusters (H2O)n, n=1–6. II. Analysis of many‐body interactions , 1994 .

[5]  Mark S. Gordon,et al.  Energy Decomposition Analyses for Many-Body Interaction and Applications to Water Complexes , 1996 .

[6]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[7]  C. E. Dykstra MODELING WEAK INTERACTION ELEMENTS AFFECTING THE STRUCTURES AND VIBRATIONAL RED-SHIFTS OF ARNHF CLUSTERS (N= 1 TO ) , 1998 .

[8]  C. Reichardt Solvents and Solvent Effects in Organic Chemistry , 1988 .

[9]  W. Andrzej Sokalski,et al.  Efficient techniques for the decomposition of intermolecular interaction energy at SCF level and beyond , 1991 .

[10]  Jacopo Tomasi,et al.  Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation, and Numerical Applications , 1997 .

[11]  G. Grégoire,et al.  Charge Separation in Molecular Clusters: Dissolution of a Salt in a Salt-(Solvent)(n)() Cluster. , 2000, Chemical reviews.

[12]  C. Reichardt,et al.  Solvatochromic Dyes as Solvent Polarity Indicators , 1994 .

[13]  J. Tomasi,et al.  Decomposition of the interaction energy with counterpoise corrections to the basis set superposition error for dimers in solution. Method and application to the hydrogen fluoride dimer , 1988 .

[14]  M. Szczęśniak,et al.  On the connection between the supermolecular Møller-Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces , 1988 .

[15]  Trygve Helgaker,et al.  A systematic ab initio study of the water dimer in hierarchies of basis sets and correlation models , 1997 .

[16]  Mark S. Gordon,et al.  Solvation of Sodium Chloride: An Effective Fragment Study of NaCl(H2O)n , 1999 .

[17]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[18]  M. Alderton,et al.  Distributed multipole analysis , 2006 .

[19]  J. C. Contador,et al.  A theoretical study of hydrogen-bonded complexes in solution: BSSE and decomposition of interaction energy , 1994 .

[20]  Jules W. Moskowitz,et al.  Water Molecule Interactions , 1970 .

[21]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[22]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[23]  L. Piela,et al.  First-order perturbation treatment of the short-range repulsion in a system of many closed-shell atoms or molecules , 1976 .

[24]  Maciej Gutowski,et al.  Weak interactions between small systems. Models for studying the nature of intermolecular forces and challenging problems for ab initio calculations , 1988 .

[25]  David J. Wales,et al.  Global minima of water clusters (H2O)n, n≤21, described by an empirical potential , 1998 .

[26]  M. Gordon,et al.  Study of Small Water Clusters Using the Effective Fragment Potential Model , 1998 .

[27]  H. Scheraga,et al.  Ion Pair Interactions in Aqueous Solution: Self-Consistent Reaction Field (SCRF) Calculations with Some Explicit Water Molecules , 2000 .

[28]  L. Piela,et al.  Proper correction for the basis set superposition error in SCF calculations of intermolecular interactions , 1987 .

[29]  J. Bertrán,et al.  Proton solvation in liquid water: an ab initio study using the continuum model , 1993 .

[30]  Mark S. Gordon,et al.  Solvation of the Menshutkin Reaction: A Rigorous Test of the Effective Fragment Method , 1999 .

[31]  J. Hirst,et al.  Ab Initio Study of the Electronic Spectrum of Formamide with Explicit Solvent , 1999 .

[32]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[33]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[34]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[35]  P. N. Day,et al.  A study of aqueous glutamic acid using the effective fragment potential method , 1997 .

[36]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[37]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[38]  Thanh N. Truong,et al.  Hydration effects on reaction profiles: an ab initio dielectric continuum study of the SN2 Cl- + CH3Cl reaction , 1995 .

[39]  I. Tuñón,et al.  Amino Acid Chemistry in Solution: Structural Study and Vibrational Dynamics of Glutamine in Solution. An ab Initio Reaction Field Model , 1998 .

[40]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[41]  J. Tomasi,et al.  Ab Initio Study of the SN2 Reaction CH3Cl + Cl- → Cl- + CH3Cl in Supercritical Water with the Polarizable Continuum Model , 1997 .

[42]  Mark S. Gordon,et al.  An effective fragment method for modeling solvent effects in quantum mechanical calculations , 1996 .

[43]  W. Andrzej Sokalski,et al.  AN EFFICIENT PROCEDURE FOR DECOMPOSITION OF THE SCF INTERACTION ENERGY INTO COMPONENTS WITH REDUCED BASIS SET DEPENDENCE , 1988 .

[44]  K. Szalewicz,et al.  Comment on “On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy” [J. Chem. Phys. 104, 8821 (1996)] , 1998 .

[45]  M J Elrod,et al.  Many-body effects in intermolecular forces. , 1994, Chemical reviews.

[46]  F. J. Luque,et al.  Theoretical Methods for the Description of the Solvent Effect in Biomolecular Systems. , 2000, Chemical reviews.

[47]  E. Marcos,et al.  Theoretical Study of the Microsolvation of the Bromide Anion in Water, Methanol, and Acetonitrile: Ion−Solvent vs Solvent−Solvent Interactions , 2000 .

[48]  Robert Moszynski,et al.  On decomposition of second‐order Mo/ller–Plesset supermolecular interaction energy and basis set effects , 1990 .

[49]  J. Rice,et al.  A study of solvent effects on hyperpolarizabilities: The reaction field model applied to acetonitrile , 1993 .

[50]  Jacopo Tomasi,et al.  Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes , 1982 .

[51]  Hari Singh Nalwa,et al.  Handbook of advanced electronic and photonic materials and devices , 2001 .

[52]  Orlando Tapia,et al.  Self-consistent reaction field theory of solvent effects , 1975 .

[53]  C. Cramer,et al.  Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. , 1999, Chemical reviews.

[54]  T. Fox,et al.  The calculation of solvatochromic shifts: the n-π* transition of acetone , 1992 .

[55]  C. Alemán,et al.  Free energies of solvation for peptides and polypeptides using SCRF methods , 1998 .

[56]  Jacopo Tomasi,et al.  A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics , 1997 .

[57]  M. Thompson,et al.  QM/MMpol: A Consistent Model for Solute/Solvent Polarization. Application to the Aqueous Solvation and Spectroscopy of Formaldehyde, Acetaldehyde, and Acetone , 1996 .

[58]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[59]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[60]  K. Wiberg,et al.  Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations , 1996 .

[61]  J. Tomasi,et al.  Hydration shell structure of the calcium ion from simulations with ab initio effective pair potentials , 1994 .

[62]  J. Kirkwood,et al.  Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions , 1934 .

[63]  Douglas A. Smith Modeling the hydrogen bond , 1994 .

[64]  L. Piela,et al.  Interpretation of the Hartree-Fock interaction energy between closed-shell systems , 1988 .

[65]  Jacopo Tomasi,et al.  Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix‐inversion procedures and the renormalization of the apparent charges , 1995, J. Comput. Chem..

[66]  I. Tuñón,et al.  Proton transfer between water molecules. A theoretical study of solvent effects using the continuum and the discrete-continuum models , 1993 .

[67]  Jacopo Tomasi,et al.  PREDICTION OF THE PKA OF CARBOXYLIC ACIDS USING THE AB INITIO CONTINUUM-SOLVATION MODEL PCM-UAHF , 1998 .

[68]  Paul Geerlings,et al.  Solvent Effect on the Global and Atomic DFT-Based Reactivity Descriptors Using the Effective Fragment Potential Model. Solvation of Ammonia , 2001 .

[69]  Mark S. Gordon,et al.  The Effective Fragment Model for Solvation: Internal Rotation in Formamide , 1996 .

[70]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[71]  J. Tomasi,et al.  Ab initio effective pair potentials for simulations of the liquid state, based on the polarizable continuum model of the solvent , 1992 .