Materials for Optical Cryocoolers

Vibration-free cooling of detectors to cryogenic temperatures is critical for many terrestrial, airborne, and space-based instruments. Cooling of solids by anti-Stokes fluorescence is an emerging refrigeration technology that is inherently vibration-free and compact, and enables cooling of small loads to cryogenic temperatures. In this Highlight, advances in laser-cooling of solids are discussed with a particular focus on the recent breakthrough laser cooling of Yb3+-doped YLiF4 crystals to 114 K. The importance of the material structure, composition, and purity of laser-cooling materials and their influence on the optical refrigerator device performance is emphasized.

[1]  Herwig Kogelnik,et al.  Off-Axis Paths in Spherical Mirror Interferometers , 1964 .

[2]  T. H. Gfroerer,et al.  External radiative quantum efficiency of 96% from a GaAs / GaInP heterostructure , 1997 .

[3]  T. R. Gosnell,et al.  Observation of laser-induced fluorescent cooling of a solid , 1995, Nature.

[4]  Mansoor Sheik-Bahae,et al.  Laser cooling of solids , 2009 .

[5]  Mansoor Sheik-Bahae,et al.  Optical refrigeration : science and applications of laser cooling of solids , 2009 .

[6]  Mansoor Sheik-Bahae,et al.  Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry , 2010 .

[7]  J. J. Mason,et al.  Maxorb - A New Selective Surface On Nickel , 1982, Photonics West - Lasers and Applications in Science and Engineering.

[8]  Qihua Xiong,et al.  Laser cooling of a semiconductor by 40 kelvin , 2013, Nature.

[9]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[10]  Joaquin R. Fernandez,et al.  Origin of laser-induced internal cooling of Yb3+ -doped systems , 2002, SPIE OPTO.

[11]  H.W. Kraner,et al.  Radiation detection and measurement , 1981, Proceedings of the IEEE.

[12]  Gordon R. Gilmore,et al.  Practical Gamma‐ray Spectrometry , 1995 .

[13]  J. Adam,et al.  Anti-Stokes laser-induced internal cooling of Yb 3+ -doped glasses , 2000 .

[14]  Seth D. Melgaard,et al.  Cryogenic optical refrigeration: Laser cooling of solids below 123 K , 2013 .

[15]  Mauro Tonelli,et al.  Laser cooling of a semiconductor load to 165 K , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[16]  G. Rumbles,et al.  Experimental demonstration of intracavity solid-state laser cooling of Yb{sup 3+}:ZrF{sub 4}-BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF glass , 2004 .

[17]  M. A. Arriandiaga,et al.  On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass , 2001 .

[18]  M. Sheik-Bahae,et al.  Can laser light cool semiconductors? , 2004, Physical review letters.

[19]  Mansoor Sheik-Bahae,et al.  Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature. , 2013, Optics letters.

[20]  S. Greenfield,et al.  Advances in Laser Cooling of Thulium-Doped Glass , 2003 .

[21]  Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses , 1999 .

[22]  Suppression of cryocooler-induced microphonics in infrared imagers , 2009 .

[23]  Mansoor Sheik-Bahae,et al.  Resonant cavity-enhanced absorption for optical refrigeration , 2010 .

[24]  Mansoor Sheik-Bahae,et al.  Precise determination of minimum achievable temperature for solid-state optical refrigeration , 2013 .

[25]  M. Sheik-Bahae,et al.  Optical Refrigeration in Solids: Fundamentals and Overview , 2009 .

[26]  P. Pringsheim Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung , 1929 .

[27]  Mansoor Sheik-Bahae,et al.  Optical refrigeration progress: cooling below NIST cryogenic temperature of 123K , 2013, Photonics West - Optoelectronic Materials and Devices.

[28]  H. Rubinsztein-Dunlop,et al.  Laser cooling of a solid from ambient temperature , 2001 .

[29]  C. Mungan,et al.  New materials for optical cooling , 2000 .

[30]  Mauro Tonelli,et al.  Single fluoride crystals as materials for laser cooling applications , 2007, SPIE LASE.

[31]  Mansoor Sheik-Bahae,et al.  Laser cooling of solids to cryogenic temperatures , 2010 .

[32]  R. Epstein,et al.  Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration , 1999 .

[33]  M. Sheik-Bahae,et al.  Laser cooling of solids , 2009 .

[34]  N. Kwong,et al.  Large excitonic enhancement of optical refrigeration in semiconductors. , 2006, Physical review letters.

[35]  Rolindes Balda,et al.  Anti-stokes laser cooling in bulk erbium-doped materials. , 2006, Physical review letters.

[36]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[37]  A. García-Adeva,et al.  Anti-Stokes laser cooling in Yb(3+)-doped KPb(2) Cl(5) crystal. , 2002, Optics letters.

[38]  Improvement of spectral resolution in the presence of periodic noise and microphonics for hyper-pure germanium detector gamma-ray spectrometry using a new digital filter , 2007 .

[39]  M. Tonelli,et al.  Laser cooling of Yb3+-doped BaY2F8 single crystal , 2006 .

[40]  Epstein,et al.  Observation of anti-stokes fluorescence cooling in thulium-doped glass , 2000, Physical review letters.

[41]  H. Rubinsztein-Dunlop,et al.  Condensed-phase optical refrigeration , 2003 .

[42]  M. Sheik-Bahae,et al.  Cooling of Yb:YLF using cavity enhanced resonant absorption , 2008, SPIE OPTO.

[43]  T. R. Gosnell,et al.  Laser cooling of a solid by 65K starting from room temperature. , 1997, Optics letters.

[44]  Mansoor Sheik-Bahae,et al.  Cryogenic optical refrigeration , 2012 .

[45]  Mansoor Sheik-Bahae,et al.  Local laser cooling of Yb:YLF to 110 K. , 2011, Optics express.

[46]  Mansoor Sheik-Bahae,et al.  Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8. , 2008, Optics express.

[47]  Markus P. Hehlen,et al.  50th anniversary of the Judd–Ofelt theory: An experimentalist's view of the formalism and its application , 2013 .

[48]  Mauro Tonelli,et al.  Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal , 2006 .

[49]  Steven R Bowman,et al.  Optical cooling in Er3+:KPb2Cl5. , 2009, Optics Express.

[50]  T. R. Gosnell Laser cooling of a solid by 65 K starting from room temperature , 1998 .

[51]  Joseph J. Brown,et al.  Measurements of optical refrigeration in ytterbium-doped crystals , 2001 .

[52]  S. Greenfield,et al.  Cooling to 208K by optical refrigeration , 2005 .

[53]  Antoni Rogalski,et al.  HgCdTe infrared detector material: history, status and outlook , 2005 .

[54]  Thomas M. Yoshida,et al.  Preparation and Characterization of High-Purity Metal Fluorides for Photonic Applications† , 2011 .

[55]  Markus P. Hehlen,et al.  Model of laser cooling in theYb3+-doped fluorozirconate glass ZBLAN , 2007 .

[56]  Band gap engineering for laser cooling of semiconductors , 2006 .