Novel ophiostomatalean fungi from galleries of Cyrtogenius africus (Scolytinae) infesting dying Euphorbia ingens

[1]  K. Černý,et al.  Phytophthora plurivora T. Jung & T. I. Burgess and other Phytophthora Species Causing Important Diseases of Ericaceous Plants in the Czech Republic , 2018 .

[2]  S. Frank,et al.  Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees , 2015, PloS one.

[3]  C. Ringler,et al.  The Role of Latin America’s Land and Water Resources for Global Food Security: Environmental Trade-Offs of Future Food Production Pathways , 2015, PloS one.

[4]  M. Wingfield,et al.  Redefining Ceratocystis and allied genera , 2014, Studies in mycology.

[5]  M. Kolařík,et al.  The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing , 2014, The ISME Journal.

[6]  R. Ploetz,et al.  Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles , 2014 .

[7]  R. Ploetz,et al.  Destructive Tree Diseases Associated with Ambrosia and Bark Beetles: Black Swan Events in Tree Pathology? , 2013, Plant disease.

[8]  D. Six,et al.  New species of Gondwanamyces from dying Euphorbia trees in South Africa , 2012, Mycologia.

[9]  D. Six Ecological and Evolutionary Determinants of Bark Beetle —Fungus Symbioses , 2012, Insects.

[10]  D. Six,et al.  Lasiodiplodia species associated with dying Euphorbia ingens in South Africa , 2011 .

[11]  R. Dunn,et al.  The sudden emergence of pathogenicity in insect–fungus symbioses threatens naive forest ecosystems , 2011, Proceedings of the Royal Society B: Biological Sciences.

[12]  M. Réblová,et al.  Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales , 2011, Studies in mycology.

[13]  D. Posada jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.

[14]  M. Wingfield,et al.  Ophiostoma gemellus and Sporothrix variecibatus from mites infesting Protea infructescences in South Africa , 2008, Mycologia.

[15]  D. Six,et al.  Discovery of new fungi associated with the decline and death of Euphorbia ingens in the Limpopo Province of South Africa , 2008 .

[16]  M. Ulyshen,et al.  A Fungal Symbiont of the Redbay Ambrosia Beetle Causes a Lethal Wilt in Redbay and Other Lauraceae in the Southeastern United States. , 2008, Plant disease.

[17]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[18]  M. Wingfield,et al.  Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma , 2006, Studies in mycology.

[19]  M. Wingfield,et al.  Phylogeny of the Ophiostoma stenoceras–Sporothrix schenckii complex , 2003, Mycologia.

[20]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[21]  Takanori Kubono,et al.  Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle (Platypus quercivorus) , 2002 .

[22]  N. Kamata,et al.  Potential impact of global warming on deciduous oak dieback caused by ambrosia fungus Raffaelea sp. carried by ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae) in Japan , 2002, Bulletin of Entomological Research.

[23]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[24]  K. O’Donnell,et al.  Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. , 1997, Molecular phylogenetics and evolution.

[25]  N. L. Glass,et al.  Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes , 1995, Applied and environmental microbiology.

[26]  M. Wingfield,et al.  Ceratocystis and Ophiostoma: Taxonomy, Ecology, and Pathogenicity , 1993 .

[27]  R. Vilgalys,et al.  Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species , 1990, Journal of bacteriology.

[28]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[29]  L. R. Batra Ambrosia fungi: a taxonomic revision and nutritional studies of some species. , 1967 .

[30]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[31]  T. Harrington,et al.  Raffaelea lauricola , a new ambrosia beetle symbiont and pathogen on the Lauracea . , 2008 .

[32]  M. Blackwell,et al.  Ecology and evolution of mycophagous bark beetles and their fungal partners. , 2005 .

[33]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[34]  T. Paine,et al.  Interactions among Scolytid bark beetles, their associated fungi, and live host conifers. , 1997, Annual review of entomology.

[35]  J. Spatafora,et al.  The polyphyletic origins of ophiostomatoid fungi , 1994 .

[36]  G. Hausner,et al.  On the subdivision of Ceratocystis s.l., based on partial ribosomal DNA sequences , 1993 .

[37]  F. Oberwinkler,et al.  Ophiostoma bragantinum n. sp., a possible teleomorph of Sporothrix inflata, found in Brazil , 1993 .

[38]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[39]  R. Beaver Insect-fungus relationships in the bark and ambrosia beetles. , 1989 .

[40]  S. Wood The Bark and Ambrosia Beetles of North and Central America (Coleoptera: Scolytidae), a Taxonomic Monograph , 1982 .