Compact XFEL and AMO sciences: SACLA and SCSS

The concept, design and performance of Japan's compact free-electron laser (FEL) facilities, the SPring-8 Compact SASE Source test accelerator (SCSS) and SPring-8 Angstrom Compact free electron LAser (SACLA), and their applications in mainly atomic, molecular and optical science are reviewed. At SCSS, intense, ultrafast FEL pulses at extreme ultraviolet (EUV) wavelengths have been utilized for investigating various multi-photon processes in atoms, molecules and clusters by means of ion and electron spectroscopy. The quantum optical effect superfluorescence has been observed with EUV excitation. A pump?probe technique combining FEL pulses with near infrared laser pulses has been realized to study the ultrafast dynamics of atoms, molecules and clusters in the sub-picosecond regime. At SACLA, deep inner-shell multi-photon ionization by intense x-ray FEL pulses has been investigated. The development of seeded FEL sources for producing transversely and temporally coherent light, as well as the expected impact on advanced science are discussed.

[1]  M. Tchaplyguine,et al.  Self-assembled heterogeneous argon/neon core-shell clusters studied by photoelectron spectroscopy. , 2007, The Journal of chemical physics.

[2]  R. London,et al.  Encapsulation and diffraction-pattern-correction methods to reduce the effect of damage in x-ray diffraction imaging of single biological molecules. , 2007, Physical review letters.

[3]  B. Erk,et al.  Sequential multiphoton multiple ionization of atomic argon and xenon irradiated by x-ray free-electron laser pulses from SACLA , 2013 .

[4]  R. Zhang,et al.  Observation of superfluorescent emissions from laser-cooled atoms , 2008 .

[5]  Full-coherent free electron laser seeded by 13th- and 15th-order harmonics of near-infrared femtosecond laser pulses , 2013 .

[6]  David Garzella,et al.  Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light , 2008 .

[7]  Competition of resonant and nonresonant paths in resonance-enhanced two-photon single ionization of He by an ultrashort extreme-ultraviolet pulse , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[8]  H. Kitamura Insertion devices for third‐generation light sources (invited) , 1995 .

[9]  H. Chapman,et al.  Heterogeneous clusters as a model system for the study of ionization dynamics within tampered samples , 2011 .

[10]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[11]  C. Jacobsen,et al.  Soft x-ray microscopy. , 1999, Trends in cell biology.

[12]  D. M. Fritz,et al.  X-ray and optical wave mixing , 2012, Nature.

[13]  Gianluca Geloni,et al.  A novel self-seeding scheme for hard X-ray FELs , 2011 .

[14]  M. Nagasono,et al.  Demonstration of up-conversion fluorescence from Ar clusters in intense free-electron-laser fields. , 2012, Optics express.

[15]  T. Ishikawa,et al.  Single-shot beam-position monitor for x-ray free electron laser. , 2011, The Review of scientific instruments.

[16]  M. Scully,et al.  Observing superradiant decay of excited-state helium atoms inside helium plasma. , 2012, Physical review letters.

[17]  A. Rudenko,et al.  Multi-coincidence ion detection system for EUV-FEL fragmentation experiments at SPring-8 , 2009 .

[18]  J. Bozek,et al.  Non-linear processes in the interaction of atoms and molecules with intense EUV and X-ray fields from SASE free electron lasers (FELs) , 2010 .

[19]  C. H. Keitel,et al.  An unexpectedly low oscillator strength as the origin of the Fe xvii emission problem , 2012, Nature.

[20]  M. Yao,et al.  Deep inner-shell multiphoton ionization by intense x-ray free-electron laser pulses. , 2012, Physical review letters.

[21]  Makina Yabashi,et al.  Vacuum-compatible pulse selector for free-electron laser. , 2009, The Review of scientific instruments.

[22]  R. Röhlsberger,et al.  Electromagnetically induced transparency with resonant nuclei in a cavity , 2012, Nature.

[23]  Sang-Kil Son,et al.  Multiwavelength anomalous diffraction at high x-ray intensity. , 2011, Physical review letters.

[24]  Anton Barty,et al.  Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser , 2013, Science.

[25]  A. Zewail,et al.  4D electron imaging: principles and perspectives. , 2008, Physical chemistry chemical physics : PCCP.

[26]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[27]  T. Shintake,et al.  C-band linac RF-system for e/sup +/e/sup -/ linear collider , 1995, Proceedings Particle Accelerator Conference.

[28]  Charge recombination in soft x-ray laser produced nanoplasmas , 2008 .

[29]  Tono Kensuke,et al.  自由電子レーザ誘起集団自然放出(超放射)の観測 , 2011 .

[30]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[31]  A. Rudenko,et al.  Frustration of photoionization of Ar nanoplasma produced by extreme ultraviolet FEL pulses , 2013 .

[32]  Katsumi Midorikawa,et al.  Extreme ultraviolet free electron laser seeded with high-order harmonic of Ti:sapphire laser. , 2011, Optics express.

[33]  Richard A. London,et al.  Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser , 2012, Nature.

[34]  Hirotada Ohashi,et al.  Pulse energy of the extreme-ultraviolet free-electron laser at SPring-8 determined using a cryogenic radiometer , 2009 .

[35]  Schafer,et al.  Calculation of photoemission from atoms subject to intense laser fields. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[36]  T. Ishikawa,et al.  Cold-target recoil-ion momentum spectroscopy for diagnostics of high harmonics of the extreme-ultraviolet free-electron laser light source at SPring-8. , 2009, The Review of scientific instruments.

[37]  A. Burov Erratum: Head-tail modes for strong space charge [Phys. Rev. ST Accel. Beams12, 044202 (2009)] , 2009 .

[38]  H. Kimura,et al.  Inhomogeneous charge redistribution in Xe clusters exposed to an intense extreme ultraviolet free electron laser , 2010 .

[39]  Tetsuya Ishikawa,et al.  Pulse energy measurement at the hard x-ray laser in Japan , 2012 .

[40]  Heike Soltau,et al.  Anomalous signal from S atoms in protein crystallographic data from an X-ray free-electron laser. , 2013, Acta crystallographica. Section D, Biological crystallography.

[41]  T. Ishikawa,et al.  Determination of the pulse duration of an x-ray free electron laser using highly resolved single-shot spectra. , 2012, Physical review letters.

[42]  T. Shintake,et al.  C-BAND LINAC RF-SYSTEM FOR e + e - LINEAR COLLIDER , 1996 .

[43]  T. Ishikawa,et al.  Suppression of ionization probability due to Rabi oscillations in the resonance two-photon ionization of He by EUV free-electron lasers , 2011 .

[44]  T. Hara,et al.  Electron-bunch compression using a dynamical nonlinearity correction for a compact x-ray free-electron laser , 2009 .

[45]  S. I. Strakhova,et al.  Doubly resonant three-photon double ionization of Ar atoms induced by an EUV free-electron laser , 2011 .

[46]  E. Takahashi,et al.  Coherent water window x ray by phase-matched high-order harmonic generation in neutral media. , 2008, Physical review letters.

[47]  T. Ishikawa,et al.  Measurement of the single-shot pulse energy of a free electron laser using a cryogenic radiometer , 2010 .

[48]  H. Hasegawa,et al.  High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[49]  E. Takahashi,et al.  Generation of highly coherent submicrojoule soft x rays by high-order harmonics , 2002 .

[50]  G. Margaritondo,et al.  Status and prospects of x-ray free-electron lasers (X-FELs): a simple presentation , 2012 .

[51]  Ryszard S. Romaniuk,et al.  Operation of a free-electron laser from the extreme ultraviolet to the water window , 2007 .

[52]  T. Ishikawa,et al.  Three-photon double ionization of Ar studied by photoelectron spectroscopy using an extreme ultraviolet free-electron laser: manifestation of resonance states of an intermediate Ar+ ion , 2011 .

[53]  R. Brewer,et al.  Observation of superradiant and subradiant spontaneous emission of two trapped ions , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[54]  C. Bostedt,et al.  Shell explosion and core expansion of xenon clusters irradiated with intense femtosecond soft x-ray pulses , 2009 .

[55]  Jerome B. Hastings,et al.  Gas detectors for x-ray lasers , 2008 .

[56]  T. Ishikawa,et al.  Second-order autocorrelation of XUV FEL pulses via time resolved two-photon single ionization of He. , 2011, Optics express.

[57]  T.Inagaki 8-GeV C-Band Accelerator Construction for XFEL/SPring-8 , 2008 .

[58]  Lorenz S. Cederbaum,et al.  Giant Intermolecular Decay and Fragmentation of Clusters , 1997 .

[59]  T. Ishikawa,et al.  Enhanced nonlinear double excitation of He in intense extreme ultraviolet laser fields. , 2011, Physical review letters.

[60]  Hiroaki Kimura,et al.  Radiometric comparison for measuring the absolute radiant power of a free-electron laser in the extreme ultraviolet , 2010 .

[61]  Katsumi Midorikawa,et al.  Generation of 10- microJ coherent extreme-ultraviolet light by use of high-order harmonics. , 2002, Optics letters.

[62]  Hitoshi Tanaka,et al.  HIGH PERFORMANCE SASE FEL ACHIEVED BY STABILITY- ORIENTED ACCELERATOR SYSTEM , 2009 .

[63]  C. Bostedt,et al.  Multistep ionization of argon clusters in intense femtosecond extreme ultraviolet pulses. , 2008, Physical review letters.

[64]  Hirotada Ohashi,et al.  Multiple ionization of atomic argon irradiated by EUV free-electron laser pulses at 62 nm: evidence of sequential electron strip , 2009 .

[65]  Takahiro Tanaka,et al.  Improvement of a cryogenic radiometer for XFEL absolute intensity measurement , 2011 .

[66]  Y. Morimoto,et al.  Observation of laser-assisted electron-atom scattering in femtosecond intense laser fields. , 2010, Physical review letters.

[67]  A. Higashiya,et al.  FAST TRACK COMMUNICATION: Ion momentum spectroscopy of N2 and O2 molecules irradiated by EUV free-electron laser pulses , 2009 .

[68]  R. Lindberg,et al.  Demonstration of self-seeding in a hard-X-ray free-electron laser , 2012, Nature Photonics.

[69]  Chao Zhang,et al.  A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region , 2008 .

[70]  T. Ishikawa,et al.  Determination of the absolute two-photon ionization cross section of He by an XUV free electron laser , 2011 .

[71]  T. Ishikawa,et al.  Time-resolved photoelectron imaging using a femtosecond UV laser and a VUV free-electron laser , 2010 .

[72]  T. Ishikawa,et al.  Multiphoton double ionization of Ar in intense extreme ultraviolet laser fields studied by shot-by-shot photoelectron spectroscopy. , 2010, Physical review letters.

[73]  Makina Yabashi,et al.  Dead-time-free ion momentum spectroscopy of multiple ionization of Xe clusters irradiated by euv free-electron laser pulses , 2009 .

[74]  Tsumoru Shintake,et al.  CeB 6 electron gun for low-emittance injector , 2007 .

[75]  Hitoshi Tanaka,et al.  Undulator commissioning by characterization of radiation in x-ray free electron lasers , 2012 .

[76]  J. Kirz,et al.  Soft X-ray microscopes and their biological applications , 1995, Quarterly Reviews of Biophysics.

[77]  T. Ishikawa,et al.  A compact X-ray free-electron laser emitting in the sub-ångström region , 2012, Nature Photonics.

[78]  L. Cederbaum,et al.  Dynamic interference of photoelectrons produced by high-frequency laser pulses. , 2012, Physical review letters.

[79]  R. Miller,et al.  'Making the molecular movie': first frames. , 2010, Acta crystallographica. Section A, Foundations of crystallography.

[80]  T. Ishikawa,et al.  Focusing of X-ray free-electron laser pulses with reflective optics , 2012, Nature Photonics.

[81]  S. I. Strakhova,et al.  Photoelectron spectroscopy of sequential three-photon double ionization of Ar irradiated by EUV free-electron laser pulses , 2010 .

[82]  T. Ishikawa,et al.  Dissociative two-photon ionization of N2 in extreme ultraviolet by intense self-amplified spontaneous emission free electron laser light , 2008 .

[83]  H.Tanaka THE SPRING-8 ANGSTROM COMPACT FREE ELECTRON LASER ( SACLA ) , 2012 .

[84]  Ralf Röhlsberger,et al.  Collective Lamb Shift in Single-Photon Superradiance , 2010, Science.

[85]  M. Scully,et al.  Picosecond superradiance in a three-photon resonant medium , 2012 .

[86]  Chao Zhang,et al.  Stable operation of a self-amplified spontaneous-emission free-electron laser in the extremely ultraviolet region , 2009 .

[87]  Shunji Goto,et al.  PHOTON OPTICS AT SCSS , 2006 .

[88]  T. Ishikawa,et al.  Observation of free-electron-laser-induced collective spontaneous emission (superfluorescence). , 2011, Physical review letters.

[89]  H. W. van der Hart,et al.  Two- and three-photon ionization of He between 1013 and 1014 W cm−2 , 2005 .

[90]  A. Rudenko,et al.  Ion-ion coincidence studies on multiple ionizations of N(2) and O(2) molecules irradiated by extreme ultraviolet free-electron laser pulses. , 2010, The Journal of chemical physics.

[91]  Hiroshi Matsumoto,et al.  SPring-8 compact SASE source (SCSS) , 2001, SPIE Optics + Photonics.

[92]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[93]  T. Ishikawa,et al.  Photoelectron angular distributions for the two-photon ionization of helium by ultrashort extreme ultraviolet free-electron laser pulses , 2012, 1204.4812.

[94]  M. L. Le Gros,et al.  X-ray tomography generates 3-D reconstructions of the yeast, saccharomyces cerevisiae, at 60-nm resolution. , 2003, Molecular biology of the cell.

[95]  佐藤 尭洋,et al.  高強度XUVFEL光による原子・分子の多光子イオン化 : メタノールおよびエタノールへの応用 , 2009 .

[96]  Hirotada Ohashi,et al.  Charge and energy transfer in argon-core–neon-shell clusters irradiated by free-electron-laser pulses at 62 nm , 2012 .

[97]  T. Ishikawa,et al.  Performance of focusing mirror device in EUV beamline of SPring-8 Compact SASE Source (SCSS) , 2011 .

[98]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .