The Navigation Potential of Signals of Opportunity-Based Time Difference of Arrival Measurements

Abstract : This research introduces the concept of navigation potential, NP, to quantify the intrinsic ability to navigate using a given signal. NP theory is a new, information theory-like concept that provides a theoretical performance limit on estimating navigation parameters from a received signal that is modeled through a stochastic mapping of the transmitted signal and measurement noise. NP theory is applied to SOP-based TDOA systems in general as well as for the Gaussian case. Furthermore, the NP is found for a received signal consisting of the transmitted signal, multiple delayed and attenuated replicas of the transmitted signal, and measurement noise. Multipath-based NP captures the dominant error source foreseen in SOP-based navigation systems and may be more indicative of actual system performance than non-multipath-based metrics. NP theory applies to signals other than SOP. As an example, NP is used to bound GPS correlation error performance for the multipath and no-multipath case.

[1]  Meir Pachter,et al.  An Efficient GPS Position Determination Algorithm , 2003 .

[2]  Don J. Torrieri,et al.  Statistical Theory of Passive Location Systems , 1984, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Charles Belove,et al.  Handbook of Modern Electronics and Electrical Engineering , 1986 .

[4]  G. Carter,et al.  The generalized correlation method for estimation of time delay , 1976 .

[5]  Timothy Douglas Hall Radiolocation using AM broadcast signals , 2002 .

[6]  H. Griffiths,et al.  Television-based bistatic radar , 1986 .

[7]  S. J. Anderson,et al.  DSTO Waveform Analysis of Transmitters of Opportunity for Passive Radar , 1999 .

[8]  Charles C. Counselman,et al.  Miniature Interferometer Terminals for Earth Surveying: Ambiguity And Multipath with Global Positioning System , 1981, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Martin F. Ryba,et al.  High precision timing of millisecond pulsars , 1991 .

[10]  Bradford W. Parkinson,et al.  Autonomous GPS Integrity Monitoring Using the Pseudorange Residual , 1988 .

[11]  Julius O. Smith,et al.  Closed-form least-squares source location estimation from range-difference measurements , 1987, IEEE Trans. Acoust. Speech Signal Process..

[12]  W. C. Scales,et al.  Air and sea rescue via satellite systems: Even experimental systems have helped survivors of air and sea accidents. Two different approaches are discussed , 1984, IEEE Spectrum.

[13]  J. Doob Stochastic processes , 1953 .

[14]  Gary M Miller,et al.  Modern Electronic Communication , 1978 .

[15]  J. Abel A divide and conquer approach to least-squares estimation , 1990 .

[16]  John D. Sahr,et al.  The Manastash Ridge radar: A passive bistatic radar for upper atmospheric radio science , 1997 .

[17]  Ariela Zeira,et al.  Realizable lower bounds for time delay estimation. 2. Threshold phenomena , 1994, IEEE Trans. Signal Process..

[18]  J. Bard,et al.  An algebraic solution to the time difference of arrival equations , 1996, Proceedings of SOUTHEASTCON '96.

[19]  Peter M. Schultheiss,et al.  Optimum Passive Bearing Estimation in a Spatially Incoherent Noise Environment , 1969 .

[20]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[21]  B. T. Fang,et al.  Simple solutions for hyperbolic and related position fixes , 1990 .

[22]  M. Kayton,et al.  Global positioning system: signals, measurements, and performance [Book Review] , 2002, IEEE Aerospace and Electronic Systems Magazine.

[23]  K. C. Ho,et al.  A simple and efficient estimator for hyperbolic location , 1994, IEEE Trans. Signal Process..

[24]  Benjamin Friedlander,et al.  On the Cramer-Rao bound for time delay and Doppler estimation , 1984, IEEE Trans. Inf. Theory.

[25]  K. Shanmugan,et al.  Random Signals: Detection, Estimation and Data Analysis , 1988 .

[26]  Ariela Zeira,et al.  Frequency domain Cramer-Rao bound for Gaussian processes , 1990, IEEE Trans. Acoust. Speech Signal Process..

[27]  M. Rabinowitz,et al.  The Rosum Television Positioning Technology , 2003 .

[28]  M. S. Bartlett,et al.  An introduction to stochastic processes, with special reference to methods and applications , 1955 .

[29]  Bradford W. Parkinson,et al.  Global Positioning System , 1995 .

[30]  J. Raquet,et al.  Closed-form solution for determining emitter location using time difference of arrival measurements , 2003 .

[31]  G. Carter,et al.  Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing , 1973 .

[32]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[33]  Abdulkadir Guner Ambiguity Function Analysis and Direct-Path Signal Filtering of the Digital Audio Broadcast (DAB) Waveform for Passive Coherent Location (PCL) , 2002 .

[34]  Norman C. Beaulieu,et al.  On the application of the Cramer-Rao and detection theory bounds to mean square error of symbol timing recovery , 1992, IEEE Trans. Commun..

[35]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[36]  D.N. Aloi,et al.  Ground-multi path mitigation via polarization steering of GPS signal , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[37]  A. Offord Introduction to the Theory of Fourier Integrals , 1938, Nature.

[38]  P. F. Panter,et al.  Modulation, noise, and spectral analysis : applied to information transmission , 1965 .

[39]  Ariela Zeira,et al.  Realizable lower bounds for time delay estimation , 1993, IEEE Trans. Signal Process..

[40]  Dario Tarchi,et al.  A ground-based parasitic SAR experiment , 2000, IEEE Trans. Geosci. Remote. Sens..

[41]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[42]  G. Downs Interplanetary navigation using pulsating radio sources , 1974 .

[43]  Simon Haykin,et al.  Communication Systems , 1978 .

[44]  W. Davenport Probability and random processes , 1970 .

[45]  F. Dyson,et al.  Non-GPS Methods of Geolocation , 2002 .

[46]  WADE FOY,et al.  Position-Location Solutions by Taylor-Series Estimation , 1976, IEEE Transactions on Aerospace and Electronic Systems.

[47]  P. E. Howland,et al.  Target tracking using television-based bistatic radar , 1999 .

[48]  K. C. Ho,et al.  Geolocation of a known altitude object from TDOA and FDOA measurements , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[49]  Gordon J. Frazer,et al.  Waveform analysis of transmissions of opportunity for passive radar , 1999, ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359).

[50]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[51]  Peter S Maybeck Combined state and parameter estimation for on-line applications, , 1972 .

[52]  John F. Raquet,et al.  Evaluating the Navigation Potential of the NTSC Analog Television Broadcast Signal , 2004 .

[53]  K. C. Ho,et al.  Solution and performance analysis of geolocation by TDOA , 1993 .

[54]  John D. Bard,et al.  Time difference of arrival dilution of precision and applications , 1999, IEEE Trans. Signal Process..

[55]  S. Goldman Frequency analysis, modulation, and noise , 1967 .