Bipolar Resistive Switching in Oxides for Memory Applications

Resistance change Random Access Memory (RRAM) devices in which at least two resistance states are used are a top candidate for future nonvolatile data storage. Simple Metal-Insulator-Metal (MIM) structures form the memory element which can be easily incorporated in large arrays. In particular, in the so-called Valence Change Memories (VCM) the drift of anions, typically oxygen, is considered as the key step to explain the bistable resistive switching behavior. A first-order classification of the observed material changes is related to the geometrical location. In “filamentary” type switching the formation and rupture of a thin filament is responsible for the resistance change. In the “distributed” systems the switching can be traced back to modifications at interfaces. Oxygen ion migration into thin tunnel oxides in high electric fields and Schottky barrier engineering with metals and complex perovskites are two mechanisms under discussion for the distributed systems. In the filamentary type of switching fast oxygen ion transport along extended defects is demonstrated to be the key step for the formation of the conducting filaments. The bistable resistance characteristics with switching induced by voltage pulses is a promising approach for future nonvolatile memory technologies. Excellent scaling behavior to sizes below 20 nm has been demonstrated.

[1]  R. Waser,et al.  Liquid Injection Atomic Layer Deposition of TiO x Films Using Ti [ OCH ( CH3 ) 2 ] 4 , 2007 .

[2]  S. Rhee,et al.  Radio frequency sputter deposition of single phase cuprous oxide using Cu2O as a target material and its resistive switching properties , 2008 .

[3]  Masashi Kawasaki,et al.  Interface resistance switching at a few nanometer thick perovskite manganite active layers , 2006 .

[4]  Rainer Waser,et al.  Realization of regular arrays of nanoscale resistive switching blocks in thin films of Nb-doped SrTiO3 , 2008 .

[5]  E. Yu,et al.  Nanoscale current transport in epitaxial SrTiO3 on n+-Si investigated with conductive atomic force microscopy , 2004 .

[6]  Zheng Wang,et al.  Field-programmable rectification in rutile TiO2 crystals , 2007 .

[7]  K. Szot,et al.  Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. , 2002, Physical review letters.

[8]  W. E. Beadle,et al.  Switching properties of thin Nio films , 1964 .

[9]  J. A. Liddle,et al.  One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography , 2005 .

[10]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[11]  Peng,et al.  Dependence of giant magnetoresistance on oxygen stoichiometry and magnetization in polycrystalline La0.67Ba0.33MnOz. , 1995, Physical review. B, Condensed matter.

[12]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[13]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[14]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.

[15]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[16]  Hiroshi Koyama,et al.  High-Speed Resistive Switching of TiO2/TiN Nano-Crystalline Thin Film , 2006 .

[17]  Byung Joon Choi,et al.  Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films , 2007 .

[18]  Chih-Yang Lin,et al.  Reproducible resistive switching behavior in sputtered CeO2 polycrystalline films , 2008 .

[19]  T. Serin,et al.  Annealing effects on the properties of copper oxide thin films prepared by chemical deposition , 2005 .

[20]  Rainer Waser,et al.  Resistive donor-doped SrTiO3 sensors: I, basic model for a fast sensor response , 2004 .

[21]  M. Kozicki,et al.  A Low-Power Nonvolatile Switching Element Based on Copper-Tungsten Oxide Solid Electrolyte , 2006, IEEE Transactions on Nanotechnology.

[22]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[23]  G. R. Miller,et al.  Point defects in reduced strontium titanate , 1973 .

[24]  T. W. Hickmott,et al.  BISTABLE SWITCHING IN NIOBIUM OXIDE DIODES , 1965 .

[25]  N. Wu,et al.  Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. , 2006, Physical Review Letters.

[26]  R. Meyer,et al.  Oxide dual-layer memory element for scalable non-volatile cross-point memory technology , 2008, 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS).

[27]  A. Rakhshani The role of space‐charge‐limited‐current conduction in evaluation of the electrical properties of thin Cu2O films , 1991 .

[28]  Chen-Hsi Lin,et al.  Resistive switching properties of sol–gel derived Mo-doped SrZrO3 thin films , 2007 .

[29]  C. Rogers,et al.  Pulsed laser deposition of superconducting Nb-doped strontium titanate thin films , 1998 .

[30]  H. Hwang,et al.  Effect of ruthenium oxide electrode on the resistive switching of Nb-doped strontium titanate , 2008 .

[31]  K. Shimakawa,et al.  Fast switching and long retention Fe-O ReRAM and its switching mechanism , 2007, 2007 IEEE International Electron Devices Meeting.

[32]  Tx,et al.  Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface , 2002, cond-mat/0212464.

[33]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[34]  Y. Tomioka,et al.  Global phase diagram of perovskite manganites in the plane of quenched disorder versus one-electron bandwidth , 2004 .

[35]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[36]  M. Fujimoto,et al.  TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching , 2006 .

[37]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[38]  W. R. Thurber,et al.  Electronic Transport in Strontium Titanate , 1964 .

[39]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[40]  H. Hwang,et al.  Uniform resistive switching with a thin reactive metal interface layer in metal-La0.7Ca0.3MnO3-metal heterostructures , 2008 .

[41]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[42]  Tetsuro Tamura,et al.  Lowering the Switching Current of Resistance Random Access Memory Using a Hetero Junction Structure Consisting of Transition Metal Oxides , 2006 .

[43]  Y. Hirose,et al.  Polarity‐dependent memory switching and behavior of Ag dendrite in Ag‐photodoped amorphous As2S3 films , 1976 .

[44]  M. Rozenberg,et al.  Nonvolatile memory with multilevel switching: a basic model. , 2004, Physical review letters.

[45]  S. Yasuda,et al.  Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution , 2007, cond-mat/0702564.

[46]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[47]  H. Pagnia,et al.  Bistable switching in electroformed metal–insulator–metal devices† , 1988 .

[48]  Z. Wei,et al.  Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism , 2008, 2008 IEEE International Electron Devices Meeting.

[49]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[50]  A. Pergament,et al.  Electroforming and Switching in Oxides of Transition Metals: The Role of Metal-Insulator Transition in the Switching Mechanism , 1996 .

[51]  Takumi Mikawa,et al.  Electroforming and resistance-switching mechanism in a magnetite thin film , 2007 .

[52]  Kuwahara,et al.  Magnetic-field-induced metal-insulator phenomena in Pr1-xCaxMnO3 with controlled charge-ordering instability. , 1996, Physical review. B, Condensed matter.

[53]  Li Xu,et al.  Reverse-bias-induced bipolar resistance switching in Pt∕TiO2∕SrTi0.99Nb0.01O3∕Pt devices , 2008 .

[54]  Byung Joon Choi,et al.  Identification of a determining parameter for resistive switching of TiO2 thin films , 2005 .

[55]  Masashi Horiguchi,et al.  Review and future prospects of low-voltage RAM circuits , 2003, IBM J. Res. Dev..

[56]  M. Aoki,et al.  Universal understanding of direct current transport properties of ReRAM based on a parallel resistance model , 2008 .

[57]  R. Waser,et al.  Electrochemical and thermochemical memories , 2008, 2008 IEEE International Electron Devices Meeting.

[58]  Y. Zhao,et al.  Resistive switching effect in SrTiO3−δ∕Nb-doped SrTiO3 heterojunction , 2007 .

[59]  S. Haddad,et al.  Non-volatile resistive switching for advanced memory applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[60]  Rainer Waser,et al.  Nanoscale resistive switching in SrTiO3 thin films , 2007 .

[61]  Hideaki Adachi,et al.  Colossal electroresistance of a Pr0.7Ca0.3MnO3 thin film at room temperature , 2004 .

[62]  R. Symanczyk,et al.  Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[63]  Tetsu Fujii,et al.  Colossal electroresistance effect at metal electrode/La1−xSr1+xMnO4 interfaces , 2006 .

[64]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[65]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[66]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface , 2004, cond-mat/0409657.

[67]  A. Sawa,et al.  Electrical properties and colossal electroresistance of heteroepitaxial Sr Ru O 3 ∕ Sr Ti 1 − x Nb x O 3 ( 0.0002 ⩽ x ⩽ 0.02 ) Schottky junctions , 2007 .

[68]  H. Hwang,et al.  Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures , 2007 .

[69]  Naijuan Wu,et al.  Resistance switching in perovskite thin films , 2006 .

[70]  D. P. Oxley,et al.  ELECTROFORMING, SWITCHING AND MEMORY EFFECTS IN OXIDE THIN FILMS , 1977 .

[71]  S. Q. Liu,et al.  Electric-pulse-induced reversible resistance change effect in magnetoresistive films , 2000 .

[72]  J. McPherson,et al.  Trends in the ultimate breakdown strength of high dielectric-constant materials , 2003 .

[73]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[74]  J. Jameson,et al.  Bipolar resistive switching in polycrystalline TiO2 films , 2007 .

[75]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3∕SrTi0.99Nb0.01O3 , 2004, cond-mat/0411474.

[76]  Rainer Waser,et al.  dc Electrical Degradation of Perovskite‐Type Titanates: III, A Model of the Mechanism , 1990 .

[77]  S. Haddad,et al.  Switching characteristics of Cu2O metal-insulator-metal resistive memory , 2007 .

[78]  S. O. Park,et al.  Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[79]  K. Szot,et al.  Microscopic nature of the metal to insulator phase transition induced through electroreduction in single‐crystal KNbO3 , 1992 .

[80]  S. Kawai,et al.  Control of electrical conductivity in laser deposited SrTiO3 thin films with Nb doping , 1994 .