Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap.

By implementing the exact density matrix for the rotating anisotropic harmonic trap, we derive a class of very fast and accurate fourth-order algorithms for evolving the Gross-Pitaevskii equation in imaginary time. Such fourth-order algorithms are possible only with the use of forward, positive time step factorization schemes. These fourth-order algorithms converge at time-step sizes an order-of-magnitude larger than conventional second-order algorithms. Our use of time-dependent factorization schemes provides a systematic way of devising algorithms for solving this type of nonlinear equations.

[1]  C.-H. Chen,et al.  Forward Symplectic Integrators for Solving Gravitational Few-Body Problems , 2003, astro-ph/0304223.

[2]  S. Stringari,et al.  Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap , 2005 .

[3]  H. Forbert,et al.  Fourth-order algorithms for solving the multivariable Langevin equation and the Kramers equation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  T. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation , 1984 .

[5]  M. Suzuki,et al.  General Decomposition Theory of Ordered Exponentials , 1993 .

[6]  D S Petrov,et al.  Critical rotation of a harmonically trapped Bose gas. , 2002, Physical review letters.

[7]  Eric Cancès,et al.  Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[9]  Siu A. Chin,et al.  A fourth order diffusion monte carlo algorithm for solving quantum many-body problems , 2000, nucl-th/0009068.

[10]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .

[11]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[12]  Boris M. Smirnov,et al.  Computer simulation studies in condensed matter physics , 1989 .

[13]  André D. Bandrauk,et al.  High-order split-step exponential methods for solving coupled nonlinear Schrodinger equations , 1994 .

[14]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[15]  Holland,et al.  Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  Siu A Chin Structure of positive decompositions of exponential operators. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  M. Aichinger,et al.  Fourth-order algorithms for solving local Schrödinger equations in a strong magnetic field , 2005, Comput. Phys. Commun..

[18]  Serge Winitzki,et al.  Uniform Approximations for Transcendental Functions , 2003, ICCSA.

[19]  A Recati,et al.  Overcritical rotation of a trapped Bose-Einstein condensate. , 2001, Physical review letters.

[20]  Siu A. Chin,et al.  Symplectic integrators from composite operator factorizations , 1997 .

[21]  Anatoly Svidzinsky,et al.  Vortices in a trapped dilute Bose-Einstein condensate , 2001, cond-mat/0102003.

[22]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[23]  S. Chin,et al.  Gradient symplectic algorithms for solving the Schrödinger equation with time-dependent potentials , 2002, nucl-th/0203008.

[24]  Short-time-evolved wave functions for solving quantum many-body problems , 2003, cond-mat/0306077.

[25]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[26]  Igor P. Omelyan,et al.  Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations , 2003 .

[27]  O. Seeberg Statistical Mechanics. — A Set of Lectures , 1975 .

[28]  Siu A. Chin,et al.  A fourth-order real-space algorithm for solving local Schrödinger equations , 2001 .

[29]  Creutz,et al.  Higher-order hybrid Monte Carlo algorithms. , 1989, Physical review letters.

[30]  Paulsamy Muruganandam,et al.  Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation , 2002 .

[31]  Q. Sheng Solving Linear Partial Differential Equations by Exponential Splitting , 1989 .

[32]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[33]  OUTPUT COUPLING AND FLOW OF A DILUTE BOSE-EINSTEIN CONDENSATE , 1998, cond-mat/9804038.

[34]  M. Strayer,et al.  The Nuclear Many-Body Problem , 2004 .

[35]  Tasso J. Kaper,et al.  N th-order operator splitting schemes and nonreversible systems , 1996 .

[36]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[37]  R. Folk,et al.  Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  David P. Landau,et al.  Computer Simulation Studies in Condensed-Matter Physics VIII , 1995 .

[39]  Clark,et al.  Properties of a Bose-Einstein condensate in an anisotropic harmonic potential. , 1996, Physical review. A, Atomic, molecular, and optical physics.