Parameterised Enumeration for Modification Problems

Recently, Creignou et al. (Theory Comput. Syst. 2017), introduced the class DelayFPT into parameterised complexity theory in order to capture the notion of efficiently solvable parameterised enumeration problems. In this paper, we propose a framework for parameterised ordered enumeration and will show how to obtain enumeration algorithms running with an FPT delay in the context of general modification problems. We study these problems considering two different orders of solutions, namely, lexicographic order and order by size. Furthermore, we present two generic algorithmic strategies. The first one is based on the well-known principle of self-reducibility and is used in the context of lexicographic order. The second one shows that the existence of a neighbourhood structure among the solutions implies the existence of an algorithm running with FPT delay which outputs all solutions ordered non-decreasingly by their size.

[1]  Roded Sharan,et al.  Cluster Graph Modification Problems , 2002, WG.

[2]  Rolf Niedermeier,et al.  Parameterized Aspects of Triangle Enumeration , 2017, FCT.

[3]  Stefan Szeider,et al.  Backdoors to Tractable Answer-Set Programming , 2011, IJCAI.

[4]  Arne Meier,et al.  Paradigms for Parameterized Enumeration , 2013, MFCS.

[5]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[6]  Sebastian Ordyniak,et al.  Backdoors to Planning , 2014, AAAI.

[7]  Nadia Creignou,et al.  Enumerating All Solutions of a Boolean CSP by Non-decreasing Weight , 2011, SAT.

[8]  Reinhard Pichler,et al.  On the Complexity of Enumerating the Answers to Well-Designed Pattern Trees , 2016, AMW.

[9]  Ami Litman,et al.  On covering problems of codes , 1997, Theory of Computing Systems.

[10]  Stefan Woltran,et al.  On the Complexity of Enumerating the Extensions of Abstract Argumentation Frameworks , 2017, IJCAI.

[11]  Matthias Ehrgott,et al.  Output-sensitive Complexity of Multiobjective Combinatorial Optimization , 2016, ArXiv.

[12]  Emmanuel Hebrard,et al.  On the Kernelization of Global Constraints , 2017, IJCAI.

[13]  Nicole Schweikardt,et al.  Enumerating answers to first-order queries over databases of low degree , 2014, PODS.

[14]  Stefan Szeider,et al.  Backdoors to Normality for Disjunctive Logic Programs , 2013, AAAI.

[15]  Stefan Szeider,et al.  Backdoors to Satisfaction , 2011, The Multivariate Algorithmic Revolution and Beyond.

[16]  Dániel Fogaras,et al.  A Scalable Randomized Method to Compute Link-Based Similarity Rank on the Web Graph , 2004, EDBT Workshops.

[17]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[18]  Kazuhiko Yamamoto,et al.  Balancing weight-balanced trees , 2011, J. Funct. Program..

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  Nadia Creignou,et al.  On Generating All Solutions of Generalized Satisfiability Problems , 1997, RAIRO Theor. Informatics Appl..

[21]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[22]  Naomi Nishimura,et al.  Solving #SAT Using Vertex Covers , 2006, SAT.

[23]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[24]  Stefan Rümmele,et al.  Backdoors to Abduction , 2013, IJCAI.

[25]  Arne Meier Enumeration in Incremental FPT-Time , 2018, ArXiv.

[26]  K. Sörensen,et al.  AN ALGORITHM TO GENERATE ALL SPANNING TREES OF A GRAPH IN ORDER OF INCREASING COST , 2005 .

[27]  Leen Stougie,et al.  Algorithms and complexity of enumerating minimal precursor sets in genome-wide metabolic networks , 2012, Bioinform..

[28]  Stefan Szeider,et al.  Augmenting Tractable Fragments of Abstract Argumentation , 2011, IJCAI.

[29]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[30]  Stefan Szeider Matched Formulas and Backdoor Sets , 2007, SAT.

[31]  Aravind K. Joshi,et al.  Computational linguistics: A new tool for exploring biopolymer structures and statistical mechanics , 2007 .

[32]  Robert Ganian,et al.  Combining Treewidth and Backdoors for CSP , 2016, STACS.

[33]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[34]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[35]  Pinar Heggernes,et al.  Graph Modification Problems (Dagstuhl Seminar 14071) , 2014, Dagstuhl Reports.

[36]  Arne Meier,et al.  Strong Backdoors for Default Logic , 2016, SAT.

[37]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[38]  Bart Selman,et al.  Backdoors To Typical Case Complexity , 2003, IJCAI.

[39]  Peter Damaschke,et al.  Parameterized enumeration, transversals, and imperfect phylogeny reconstruction , 2004, Theor. Comput. Sci..

[40]  Henning Fernau,et al.  On Parameterized Enumeration , 2002, COCOON.

[41]  Fedor V. Fomin,et al.  A Polynomial Kernel for Proper Interval Vertex Deletion , 2013, SIAM J. Discret. Math..

[42]  Arne Meier,et al.  Backdoors for Linear Temporal Logic , 2016, IPEC.

[43]  Rolf Niedermeier,et al.  Fixed-Parameter Algorithms for CLOSEST STRING and Related Problems , 2003, Algorithmica.

[44]  Stefan Szeider,et al.  Backdoors into heterogeneous classes of SAT and CSP , 2017, J. Comput. Syst. Sci..