Effect of Sinter Fracture and Ohmic Resistance on Capacity Retention in the Nickel Oxide Electrode

The lifetime of batteries which utilize the nickel oxide electrode is often limited because this electrode loses a significant portion of its capacity as it is cycled. It is asserted that this capacity loss may often be attributed to cracking or separation of the conductive nickel sinter in the electrode, which forces electronic current to pass through the poorly conducting hydrated oxide and thus imposes a significant ohmic resistance. The model indicates that the oxide develops a nearly insulating layer which prevents complete discharge in the cycled electrode at usable rates. The capacity retention can be improved by reducing the cyclic stresses or strengthening the current collecting structure, redistributing it to provide a shorter current path through the solid phase, or by increasing the conductivity of the oxide to delay the formation of an insulating layer.