The effects of swing-leg retraction on running performance: analysis, simulation, and experiment

SUMMARY Using simple running models, researchers have argued that swing-leg retraction can improve running robot performance. In this paper, we investigate whether this holds for a more realistic simulation model validated against a physical running robot. We find that swing-leg retraction can improve stability and disturbance rejection. Alternatively, swing-leg retraction can simultaneously reduce touchdown forces, slipping likelihood, and impact energy losses. Surprisingly, swing-leg retraction barely affected net energetic efficiency. The retraction rates at which these effects are the greatest are strongly model-dependent, suggesting that robot designers cannot always rely on simplified models to accurately predict such complex behaviors.

[1]  Jessica K. Hodgins,et al.  Dynamically Stable Legged Locomotion , 1983 .

[2]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[3]  R. Blickhan The spring-mass model for running and hopping. , 1989, Journal of biomechanics.

[4]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[5]  T. McGeer,et al.  Passive bipedal running , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[6]  Dinesh C. Verma,et al.  Maintainability: A Key to Effective Serviceability and Maintenance Management , 1995 .

[7]  Daniel E. Koditschek,et al.  Characterization of monoped equilibrium gaits , 1997, Proceedings of International Conference on Robotics and Automation.

[8]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[9]  Chee-Meng Chew,et al.  Virtual Model Control: An Intuitive Approach for Bipedal Locomotion , 2001, Int. J. Robotics Res..

[10]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[11]  H. Geyer,et al.  Natural control of spring-like running : Optimised selfstabilisation , 2002 .

[12]  R. Full,et al.  Dynamic stabilization of rapid hexapedal locomotion. , 2002, The Journal of experimental biology.

[13]  Hartmut Geyer,et al.  Swing-leg retraction: a simple control model for stable running , 2003, Journal of Experimental Biology.

[14]  Philip Holmes,et al.  A Simply Stabilized Running Model , 2005, SIAM Rev..

[15]  R. Blickhan,et al.  Similarity in multilegged locomotion: Bouncing like a monopode , 1993, Journal of Comparative Physiology A.

[16]  Frans C. T. van der Helm,et al.  How to keep from falling forward: elementary swing leg action for passive dynamic walkers , 2005, IEEE Transactions on Robotics.

[17]  Martijn Wisse,et al.  Dynamic Stability of a Simple Biped Walking System with Swing Leg Retraction , 2006 .

[18]  Jonathan E. Clark,et al.  iSprawl: Design and Tuning for High-speed Autonomous Open-loop Running , 2006, Int. J. Robotics Res..

[19]  Daan G. E. Hobbelen,et al.  Limit Cycle Walking , 2007 .

[20]  Martijn Wisse,et al.  A Disturbance Rejection Measure for Limit Cycle Walkers: The Gait Sensitivity Norm , 2007, IEEE Transactions on Robotics.

[21]  Martijn Wisse,et al.  Swing-Leg Retraction for Limit Cycle Walkers Improves Disturbance Rejection , 2008, IEEE Transactions on Robotics.

[22]  Kevin Blankespoor,et al.  BigDog, the Rough-Terrain Quadruped Robot , 2008 .

[23]  Reinhard Blickhan,et al.  Spring-Legged Locomotion on uneven Ground: A Control Approach to keep the running Speed constant , 2009 .

[24]  Jessy W. Grizzle,et al.  Modeling and control of the monopedal robot Thumper , 2009, 2009 IEEE International Conference on Robotics and Automation.

[25]  Fumihiko Asano Effects of swing-leg retraction and mass distribution on energy-loss coefficient in limit cycle walking , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Susanne W. Lipfert,et al.  Swing leg control in human running , 2010, Bioinspiration & biomimetics.

[27]  R. Blickhan,et al.  Running on uneven ground: leg adjustments to altered ground level. , 2010, Human movement science.

[28]  M. Daley,et al.  Two explanations for the compliant running paradox: reduced work of bouncing viscera and increased stability in uneven terrain , 2010, Biology Letters.

[29]  Martijn Wisse,et al.  Running with improved disturbance rejection by using non-linear leg springs , 2011, Int. J. Robotics Res..

[30]  Martijn Wisse,et al.  The effect of swing leg retraction on running energy efficiency , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Martijn Wisse,et al.  The optimal swing-leg retraction rate for running , 2011, 2011 IEEE International Conference on Robotics and Automation.

[32]  A. Seyfarth,et al.  Inheritance of SLIP running stability to a single-legged and bipedal model with leg mass and damping , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[33]  P. Beek,et al.  Assessing the stability of human locomotion: a review of current measures , 2013, Journal of The Royal Society Interface.

[34]  Matthew Daniel Haberland,et al.  Extracting principles from biology for application to running robots , 2014 .