The Circumstellar Environments of Double-peaked, Calcium-strong Transients 2021gno and 2021inl

We present panchromatic observations and modeling of calcium-strong supernovae (SNe) 2021gno in the star-forming host-galaxy NGC 4165 and 2021inl in the outskirts of elliptical galaxy NGC 4923, both monitored through the Young Supernova Experiment transient survey. The light curves of both, SNe show two peaks, the former peak being derived from shock cooling emission (SCE) and/or shock interaction with circumstellar material (CSM). The primary peak in SN 2021gno is coincident with luminous, rapidly decaying X-ray emission (L x = 5 × 1041 erg s−1) detected by Swift-XRT at δ t = 1 day after explosion, this observation being the second-ever detection of X-rays from a calcium-strong transient. We interpret the X-ray emission in the context of shock interaction with CSM that extends to r < 3 × 1014 cm. Based on X-ray modeling, we calculate a CSM mass M CSM = (0.3−1.6) × 10−3 M ⊙ and density n = (1−4) × 1010 cm−3. Radio nondetections indicate a low-density environment at larger radii (r > 1016 cm) and mass-loss rate of Ṁ<10−4 M ⊙ yr−1. SCE modeling of both primary light-curve peaks indicates an extended-progenitor envelope mass M e = 0.02−0.05 M ⊙ and radius R e = 30−230 R ⊙. The explosion properties suggest progenitor systems containing either a low-mass massive star or a white dwarf (WD), the former being unlikely given the lack of local star formation. Furthermore, the environments of both SNe are consistent with low-mass hybrid He/C/O WD + C/O WD mergers.

[1]  R. Margutti,et al.  Physical Properties of the Host Galaxies of Ca-rich Transients , 2022, The Astrophysical Journal.

[2]  Moo-Keon Jung,et al.  Effects of Winds on the Optical Properties of Type Ib and Ic Supernova Progenitors , 2021, The Astrophysical Journal.

[3]  David O. Jones,et al.  Final Moments. I. Precursor Emission, Envelope Inflation, and Enhanced Mass Loss Preceding the Luminous Type II Supernova 2020tlf , 2021, The Astrophysical Journal.

[4]  S. Smartt,et al.  SN2017jgh: a high-cadence complete shock cooling light curve of a SN IIb with the Kepler telescope , 2021, Monthly Notices of the Royal Astronomical Society.

[5]  D. Jones,et al.  The Early Phases of Supernova 2020pni: Shock Ionization of the Nitrogen-enriched Circumstellar Material , 2021, The Astrophysical Journal.

[6]  P. Beniamini,et al.  No velocity-kicks are required to explain large-distance offsets of Ca-rich supernovae and short-GRBs , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  E. Berger,et al.  Late-time Observations of Calcium-rich Transient SN 2019ehk Reveal a Pure Radioactive Decay Power Source , 2020, 2010.15863.

[8]  P. D. Aleo,et al.  The Young Supernova Experiment: Survey Goals, Overview, and Operations , 2020, The Astrophysical Journal.

[9]  K. De,et al.  The Peculiar Ca-rich SN2019ehk: Evidence for a Type IIb Core-collapse Supernova from a Low-mass Stripped Progenitor , 2020, The Astrophysical Journal.

[10]  A. Piro,et al.  Shock Cooling Emission from Extended Material Revisited , 2020, 2007.08543.

[11]  Adam A. Miller,et al.  SN2019dge: A Helium-rich Ultra-stripped Envelope Supernova , 2020, The Astrophysical Journal.

[12]  T. Morokuma,et al.  Calcium-rich Transient SN 2019ehk in a Star-forming Environment: Yet Another Candidate for a Precursor of a Double Neutron-star Binary , 2020, The Astrophysical Journal.

[13]  S. Smartt,et al.  SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features , 2020, The Astrophysical Journal.

[14]  Coo,et al.  SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart , 2020, The Astrophysical Journal.

[15]  Adam A. Miller,et al.  The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses , 2020, The Astrophysical Journal.

[16]  B. Stalder,et al.  Design and Operation of the ATLAS Transient Science Server , 2020, Publications of the Astronomical Society of the Pacific.

[17]  David O. Jones,et al.  Ca hnk: The Calcium-rich Transient Supernova 2016hnk from a Helium Shell Detonation of a Sub-Chandrasekhar White Dwarf , 2019, The Astrophysical Journal.

[18]  E. Quataert,et al.  The Progenitors of Calcium-strong Transients , 2019, The Astrophysical Journal.

[19]  K. Maguire,et al.  On the Ca-strong 1991bg-like type Ia supernova 2016hnk: evidence for a Chandrasekhar-mass explosion , 2019, 1904.10034.

[20]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[21]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[22]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[23]  E. Ofek,et al.  A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary , 2018, Science.

[24]  B. Stalder,et al.  The ATLAS All-Sky Stellar Reference Catalog , 2018, The Astrophysical Journal.

[25]  H. Perets,et al.  Neutron star–white dwarf mergers: early evolution, physical properties, and outcomes , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  Matthew J. Matuszewski,et al.  iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy , 2018, The Astrophysical Journal.

[27]  H. Perets,et al.  Formation and evolution of hybrid He–CO white dwarfs and their properties , 2018, Monthly Notices of the Royal Astronomical Society.

[28]  W. M. Wood-Vasey,et al.  PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation , 2018, 1802.01589.

[29]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[30]  L. Galbany,et al.  Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy , 2017, 1711.05765.

[31]  UK.,et al.  Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results , 2017, Publications of the Astronomical Society of Australia.

[32]  R. Saunders,et al.  A digital correlator upgrade for the Arcminute MicroKelvin Imager , 2017, 1707.04237.

[33]  Igor V. Chilingarian,et al.  iPTF15eqv: Multiwavelength Exposé of a Peculiar Calcium-rich Transient , 2017, 1706.01887.

[34]  I. Arcavi,et al.  Numerically Modeling the First Peak of the Type IIb SN 2016gkg , 2017, 1703.00913.

[35]  S. Taubenberger The Extremes of Thermonuclear Supernovae , 2017, 1703.00528.

[36]  M. Shibata,et al.  Explosive Nucleosynthesis of Ultra-Stripped Type Ic Supernovae , 2017, 1707.02685.

[37]  M. Davies,et al.  Mass transfer in white dwarf-neutron star binaries , 2017, 1702.02377.

[38]  H. Janka,et al.  Nucleosynthesis in the Innermost Ejecta of Neutrino-driven Supernova Explosions in Two Dimensions , 2017, 1701.06786.

[39]  A. Clocchiatti,et al.  Type Ib and IIb Supernova Progenitors in Interacting Binary Systems , 2017, 1701.02089.

[40]  P. Mazzali,et al.  Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars , 2016, 1612.02882.

[41]  E. Ofek,et al.  Two New Calcium-rich Gap Transients in Group and Cluster Environments , 2016, 1612.00454.

[42]  Armin Rest,et al.  Constraints on the Progenitor of SN 2016gkg from Its Shock-cooling Light Curve , 2016, 1611.06451.

[43]  Keivan G. Stassun,et al.  The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory , 2016, 1608.02013.

[44]  E. Waxman,et al.  UV/Optical Emission from the Expanding Envelopes of Type II Supernovae , 2016, 1607.03700.

[45]  P. Duffell RT1D: 1D code for Rayleigh-Taylor instability , 2016 .

[46]  E. Quataert,et al.  The Evolution and Fate of Super-Chandrasekhar Mass White Dwarf Merger Remnants , 2016, 1606.02300.

[47]  Andrew Becker,et al.  HOTPANTS: High Order Transform of PSF ANd Template Subtraction , 2015 .

[48]  R. Foley Kinematics and Host-Galaxy Properties Suggest a Nuclear Origin for Calcium-Rich Supernova Progenitors , 2015, 1501.07607.

[49]  J. Wheeler,et al.  Analysis of late-time light curves of Type IIb, Ib and Ic supernovae , 2014, 1411.5975.

[50]  A. Levan,et al.  The progenitors of calcium-rich transients are not formed in situ ⋆ , 2014, 1408.1424.

[51]  P. Brown,et al.  SOUSA: the Swift Optical/Ultraviolet Supernova Archive , 2014, 1407.3808.

[52]  D. Kasen,et al.  MONTE CARLO RADIATION-HYDRODYNAMICS WITH IMPLICIT METHODS , 2014, 1404.4652.

[53]  J. Lyman,et al.  Environment-derived constraints on the progenitors of low-luminosity Type I supernovae , 2013, 1306.2474.

[54]  M. Hobson,et al.  AMI Galactic Plane Survey at 16 GHz – I. Observing, mapping and source extraction★ , 2012, 1208.5343.

[55]  N. Gehrels,et al.  The prompt-afterglow connection in gamma-ray bursts: a comprehensive statistical analysis of Swift X-ray light curves , 2012, 1203.1059.

[56]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[57]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[58]  E. O. Ofek,et al.  A faint type of supernova from a white dwarf with a helium-rich companion , 2009, Nature.

[59]  Roger C. Boysen,et al.  The Arcminute Microkelvin Imager , 2008, 0807.2469.

[60]  E. O. Ofek,et al.  The Broad-lined Type Ic SN 2003jd , 2007, 0710.5173.

[61]  G. Theureau,et al.  Kinematics of the Local Universe. XIII. 21-cm line measurements of 452 galaxies with the Nançay radiotelescope, JHK Tully-Fisher relation, and preliminary maps of the peculiar velocity field , 2006, astro-ph/0611626.

[62]  R. Thomas,et al.  Time-dependent Monte Carlo Radiative Transfer Calculations for Three-dimensional Supernova Spectra, Light Curves, and Polarization , 2006, astro-ph/0606111.

[63]  J. Prieto,et al.  Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey , 2005, astro-ph/0509240.

[64]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[65]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[66]  P. Giommi,et al.  Chandra Observations of the X-Ray Environs of SN 1998bw/GRB 980425 , 2004, astro-ph/0401184.

[67]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[68]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[69]  R. Foley,et al.  Optical Photometry and Spectroscopy of the SN 1998bw–like Type Ic Supernova 2002ap , 2003, astro-ph/0307136.

[70]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[71]  Marcos J. Montes,et al.  Radio emission from supernovae and gamma-ray bursters , 2002 .

[72]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[73]  M. Skrutskie,et al.  2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.

[74]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[75]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[76]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[77]  R. Chevalier Synchrotron Self-Absorption in Radio Supernovae , 1998 .

[78]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[79]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[80]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[81]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[82]  J. C. Wheeler,et al.  Models for Type I supernovae - Partially incinerated white dwarfs , 1984 .

[83]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[84]  Dan F. Lester,et al.  Early observations of SN 1993J in M81 at McDonald observatory , 1993 .

[85]  R. Wade,et al.  The Radial Velocity Curve and Peculiar TiO Distribution of the Red Secondary Star in Z Chamaeleontis , 1988 .

[86]  E. Salpeter The Luminosity function and stellar evolution , 1955 .