Massive-Star Supernovae as Major Dust Factories

We present late-time optical and mid-infrared observations of the Type II supernova 2003gd in the galaxy NGC 628. Mid-infrared excesses consistent with cooling dust in the ejecta are observed 499 to 678 days after outburst and are accompanied by increasing optical extinction and growing asymmetries in the emission-line profiles. Radiative-transfer models show that up to 0.02 solar masses of dust has formed within the ejecta, beginning as early as 250 days after outburst. These observations show that dust formation in supernova ejecta can be efficient and that massive-star supernovae could have been major dust producers throughout the history of the universe.

[1]  P. J. Storey,et al.  The dusty MOCASSIN: fully self-consistent 3D photoionization and dust radiative transfer models , 2005, astro-ph/0507050.

[2]  S. Verley,et al.  A study of the Type II-P supernova 2003gd in M74 , 2005, astro-ph/0501341.

[3]  O. Krause,et al.  No cold dust within the supernova remnant Cassiopeia A , 2004, Nature.

[4]  Larry R. Nittler,et al.  Astrophysics with Presolar Stardust , 2004 .

[5]  O. Krause,et al.  Imaging of the Supernova Remnant Cassiopeia A with the Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[6]  Moscow,et al.  On the source of the late-time infrared luminosity of SN 1998S and other Type II supernovae , 2004, astro-ph/0404533.

[7]  M. A. Hendry,et al.  Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova , 2004, Science.

[8]  Weidong Li,et al.  On the Progenitor of the Type II‐Plateau Supernova 2003gd in M74 , 2003, astro-ph/0307226.

[9]  Xiaohui Fan,et al.  Dust emission from the most distant quasars , 2003, astro-ph/0305116.

[10]  M. Edmunds,et al.  Dust formation in early galaxies , 2003, astro-ph/0302566.

[11]  M. Turatto,et al.  Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation , 2003 .

[12]  Jr.,et al.  SINGS: The SIRTF Nearby Galaxies Survey , 2001, astro-ph/0305437.

[13]  P. Ferrara Dust Formation in Primordial Type II Supernovae , 2000, astro-ph/0009176.

[14]  E. Dwek,et al.  Analytical Approximations for Calculating the Escape and Absorption of Radiation in Clumpy Dusty Environments , 1999, astro-ph/9905029.

[15]  R. Kirshner,et al.  Late-Time Optical and Ultraviolet Spectra of SN 1979C and SN 1980K , 1998, astro-ph/9810407.

[16]  A. Tielens Interstellar Depletions and the Life Cycle of Interstellar Dust , 1998 .

[17]  E. Dwek The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy , 1997, astro-ph/9707024.

[18]  D. Clayton,et al.  Dust from Supernovae , 1997 .

[19]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[20]  S. Woosley,et al.  Postexplosion hydrodynamics of supernovae in red supergiants , 1994 .

[21]  S. Doty,et al.  A critical evaluation of semianalytic methods in the study of centrally heated, unresolved, infrared sources , 1994 .

[22]  M. Turatto,et al.  The late evolution of the type II SN 1990E , 1994 .

[23]  Martin G. Cohen,et al.  Airborne Spectrophotometry of SN 1987A from 1.7 to 12.6 Microns: Time History of the Dust Continuum and Line Emission , 1993 .

[24]  N. Suntzeff,et al.  The bolometric light curve of SN 1987A. I. Results from ESO and CTIO U to Q0 photometry , 1990 .

[25]  S. Woosley,et al.  Hard emission at late times from SN 1987A , 1989 .

[26]  K. Nomoto,et al.  Formation of dust grains in the ejecta of SN 1987A. II. , 1989 .

[27]  E. Dwek Will dust black out SN 1987A , 1988 .

[28]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[29]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[30]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[31]  R. Klein,et al.  On the Rayleigh-Taylor instability in stellar explosions , 1977 .