Compressive behavior and deformation mechanisms of rigid polymeric foams: A review

[1]  A. Shukla,et al.  Hydrostatic high strain rate loading response of closed-cell polymeric foams as a function of mass density , 2022, Composites Part B: Engineering.

[2]  Zhenqiang Zhao,et al.  Understanding the effect of defects on compressive behaviors of closed-cell foams: Experiment and statistical model , 2022, Composites Part B: Engineering.

[3]  Hui Li,et al.  Vibro-impact response of FRP sandwich plates with a foam core reinforced by chopped fiber rods , 2022, Composites Part B: Engineering.

[4]  F. Scarpa,et al.  Anisotropy in conventional and uniaxially thermoformed auxetic polymer foams , 2022, Composites Part B: Engineering.

[5]  F. Yang,et al.  Anisotropic compression behaviors of bio-inspired modified body-centered cubic lattices validated by additive manufacturing , 2022, Composites Part B: Engineering.

[6]  V. Kostopoulos,et al.  Blast protection of steel reinforced concrete structures using composite foam-core sacrificial cladding , 2022, Composites Science and Technology.

[7]  S. Satapathy,et al.  Density, Microstructure, and Strain-Rate Effects on the Compressive Response of Polyurethane Foams , 2021, Experimental Mechanics.

[8]  W. Altenhof,et al.  Experimental, Numerical and Analytical Investigations on the Elevated Strain Rate Compressive Behavior of High-Performance PES Foam up to 200 s−1 , 2021, International Journal of Impact Engineering.

[9]  Yanyu Chen,et al.  Tailoring 3D printed graded architected polymer foams for enhanced energy absorption , 2021 .

[10]  S. Hiermaier,et al.  The Symmpact: A Direct-Impact Hopkinson Bar Setup Suitable for Investigating Dynamic Equilibrium in Low-Impedance Materials , 2021, Experimental Mechanics.

[11]  K. Leong,et al.  Development and impact characterization of acrylic thermoplastic composite bicycle helmet shell with improved safety and performance , 2021 .

[12]  Chul B. Park,et al.  Microcellular injection molded outstanding oleophilic and sound-insulating PP/PTFE nanocomposite foam , 2021 .

[13]  R. Das,et al.  Characterization of microstructures of SAN foam core using micro-computed tomography , 2021, Cellular Polymers.

[14]  B. Shafei,et al.  Design optimization of double-layered structural insulated panels for windborne debris hazard , 2021, Composites Part B: Engineering.

[15]  C.S. Rekatsinas,et al.  A non-linear cubic spline layerwise time domain spectral finite element for the analysis of impacts on sandwich structures , 2021 .

[16]  J. Li,et al.  A novel methodology for large strain under intermediate strain rate loading , 2021 .

[17]  L. Andena,et al.  An image-based approach for structure investigation and 3D numerical modelling of polymeric foams , 2021, Journal of Polymer Research.

[18]  D. Davino,et al.  Magnetic field-structuring as versatile approach to shape the anisotropic mechanical response of composite foams , 2021 .

[19]  M. Safarabadi,et al.  Experimental and numerical investigation of Low-Velocity impact on steel wire reinforced foam Core/Composite skin sandwich panels , 2021 .

[20]  T. Børvik,et al.  Sandwich Panels with Polymeric Foam Cores Exposed to Blast Loading: An Experimental and Numerical Investigation , 2020, Applied Sciences.

[21]  I. Anderson,et al.  Interdigitated Sensor Based on a Silicone Foam for Subtle Robotic Manipulation. , 2020, Macromolecular rapid communications.

[22]  Y. Petit,et al.  Strain Rate Dependent Behavior of Vinyl Nitrile Helmet Foam in Compression and Combined Compression and Shear , 2020, Applied Sciences.

[23]  W. Altenhof,et al.  Anisotropic compressive behavior of rigid PVC foam at strain rates up to 200 s−1 , 2020 .

[24]  B. Shafei,et al.  Performance of structural insulated panels with metal skins subjected to windborne debris impact , 2020 .

[25]  N. Huynh,et al.  Experimentally-validated predictions of impact response of polyurea foams using viscoelasticity based on bulk properties , 2020 .

[26]  S. Li,et al.  Crushing analysis and design optimization for foam-filled aluminum/CFRP hybrid tube against transverse impact , 2020 .

[27]  Jeong‐Hyeon Kim,et al.  Dynamic compressive behavior of rigid polyurethane foam with various densities under different temperatures , 2020 .

[28]  A. Mohany,et al.  Enhancing the accuracy and efficiency of characterizing polymeric cellular structures using 3D-based computed tomography , 2020 .

[29]  C. Munteanu,et al.  Expanded Foam Glass - an Application for Fire Resistant Multilayer Materials , 2020, IOP Conference Series: Materials Science and Engineering.

[30]  Chi-Seung Lee,et al.  Constitutive-damage modeling and computational implementation for simulation of elasto-viscoplastic-damage behavior of polymeric foams over a wide range of strain rates and temperatures , 2020 .

[31]  O. Hopperstad,et al.  Mechanical response of low density expanded polypropylene foams in compression and tension at different loading rates and temperatures , 2020, Materials Today Communications.

[32]  J. Y. Huang,et al.  Microstructural characterization and constitutive modeling of deformation of closed-cell foams based on in situ x-ray tomography , 2020 .

[33]  Bing Du,et al.  Dynamic response of additively manufactured graded foams , 2020, Composites Part B: Engineering.

[34]  A. Yonezu,et al.  FEM simulation of polymeric foam with random pore structure: Uniaxial compression with loading rate effect , 2020 .

[35]  L. Iannucci,et al.  On the Compressive Response of Polymeric Cellular Materials , 2020, Materials.

[36]  A. Vettorello,et al.  Material Model Development of Sandwich Composite: Numerical-Experimental Investigation of Head Dummy Impacting at Vehicle Interior Components , 2019, Key Engineering Materials.

[37]  I. Weidlich,et al.  Anisotropy in Polyurethane Pre-Insulated Pipes , 2019, Polymers.

[38]  M. Göbel,et al.  Multi-scale modelling approach to homogenise the mechanical properties of polymeric closed-cell bead foams , 2019 .

[39]  H. Mahfuz,et al.  Enhancing Debond Fracture Toughness of Sandwich Composites for Marine Current Turbine Blades , 2019, OCEANS 2019 MTS/IEEE SEATTLE.

[40]  Bing Du,et al.  Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells , 2019, International Journal of Impact Engineering.

[41]  Tore Børvik,et al.  Low velocity impact on crash components with steel skins and polymer foam cores , 2019, International Journal of Impact Engineering.

[42]  L. Lamberson,et al.  Strain Rate Dependent Compressive Response of Open Cell Polyurethane Foam , 2019, Experimental Mechanics.

[43]  S. Luo,et al.  Correlation between cell wall buckling and deformation banding in a closed-cell foam , 2019, Scripta Materialia.

[44]  Zhiqiang Fan,et al.  Effect of the cenospheres size and internally lateral constraints on dynamic compressive behavior of fly ash cenospheres polyurethane syntactic foams , 2019, Composites Part B: Engineering.

[45]  C. Santoni,et al.  Characterising and modelling the mechanical behaviour of polymeric foams under complex loading , 2019, Journal of Materials Science.

[46]  P. Viot,et al.  A new method for the study of parabolic impact of foam-core sandwich panels , 2019, Composites Part B: Engineering.

[47]  Q. Shen,et al.  Synthesis and compressive behaviors of PMMA microporous foam with multi-layer cell structure , 2019, Composites Part B: Engineering.

[48]  V. Shim,et al.  Response of anisotropic polyurethane foam to compression at different loading angles and strain rates , 2019, International Journal of Impact Engineering.

[49]  T. Goh,et al.  Experimental investigation of macroscopic material nonlinear behavior and microscopic void volume fraction change for porous materials under uniaxial compression , 2019, Composites Part B: Engineering.

[50]  Zhihua Wang,et al.  Sample size effect on the mechanical behavior of aluminum foam , 2019, International Journal of Mechanical Sciences.

[51]  Kevin R. Long,et al.  Damage mechanisms in elastomeric foam composites: Multiscale X-ray computed tomography and finite element analyses , 2019, Composites Science and Technology.

[52]  Jianguang Fang,et al.  Dynamic impact response of aluminum honeycombs filled with Expanded Polypropylene foam , 2019, Composites Part B: Engineering.

[53]  I. Manke,et al.  Multi-scale tomographic analysis of polymeric foams: A detailed study of the cellular structure , 2018, European Polymer Journal.

[54]  L. Andena,et al.  Compression of polystyrene and polypropylene foams for energy absorption applications: A combined mechanical and microstructural study , 2018, Journal of Cellular Plastics.

[55]  H. Fang,et al.  Energy absorption of foam-filled multi-cell composite panels under quasi-static compression , 2018, Composites Part B: Engineering.

[56]  E Linul,et al.  The Anisotropy Effect of Closed-Cell Polyisocyanurate (PIR) Rigid Foam under Quasi-Static Compression Loads , 2018, IOP Conference Series: Materials Science and Engineering.

[57]  M. Papaelias,et al.  Wet/dry influence on behaviors of closed-cell polymeric cross-linked foams under static, dynamic and impact loads , 2018, Construction and Building Materials.

[58]  Wensu Chen,et al.  Impact response and energy absorption of single phase syntactic foam , 2018, Composites Part B: Engineering.

[59]  Ana Barros-Timmons,et al.  Polyurethane Foams: Past, Present, and Future , 2018, Materials.

[60]  S. Satapathy,et al.  High Rate Compressive Behaviour of a Dilatant Polymeric Foam , 2018, Journal of Dynamic Behavior of Materials.

[61]  J. Llorca,et al.  Effect of anisotropy on the mechanical properties of polyurethane foams: An experimental and numerical study , 2018, Mechanics of Materials.

[62]  P. Cardiff,et al.  Mechanical behaviour of EPS foam under combined compression-shear loading , 2018, Materials Today Communications.

[63]  J. Llorca,et al.  Modelling of the mechanical behavior of polyurethane foams by means of micromechanical characterization and computational homogenization , 2018, International Journal of Solids and Structures.

[64]  Jie Li,et al.  Full-field deformation and strain measurement of vehicle body under high-speed impact , 2018, Measurement Science and Technology.

[65]  Antonio Lanzotti,et al.  Low-Velocity Impacts on a Polymeric Foam for the Passive Safety Improvement of Sports Fields: Meshless Approach and Experimental Validation , 2018, Applied Sciences.

[66]  G. Carman,et al.  A coupled constitutive relation with impulse-momentum for compressive impact behavior of the expanded polypropylene foam , 2018, Polymer Engineering & Science.

[67]  Q. Shen,et al.  Compressive response of PMMA microcellular foams at low and high strain rates , 2018 .

[68]  Jos Vander Sloten,et al.  Designing safer composite helmets to reduce rotational accelerations during oblique impacts , 2018, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[69]  B. Depreitere,et al.  Optimization of Composite Foam Concept for Protective Helmets to Mitigate Rotational Acceleration of the Head in Oblique Impacts: A Parametric Study , 2018 .

[70]  Yongle Sun,et al.  Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling , 2018 .

[71]  B. Depreitere,et al.  Decoupling shear and compression properties in composite polymer foams by introducing anisotropy at macro level , 2018 .

[72]  Morten Rikard Jensen,et al.  Finite element modeling of a novel cutting deformation mode of AA6061-T6 tubes employing higher order Lagrangian element formulations , 2017 .

[73]  T. Goh,et al.  Modeling of elasto-viscoplastic behavior for polyurethane foam under various strain rates and temperatures , 2017 .

[74]  Wei Zhang,et al.  Dynamic response and failure of sandwich plates with PVC foam core subjected to impulsive loading , 2017 .

[75]  A. Yonezu,et al.  Experimental and numerical investigations of the anisotropic deformation behavior of low-density polymeric foams , 2017 .

[76]  Z. Chen,et al.  Compressive Mechanical Property Analysis of Eva Foam: Its Buffering Effects at Different Impact Velocities , 2017 .

[77]  B. Depreitere,et al.  Effect of polymer foam anisotropy on energy absorption during combined shear-compression loading , 2017 .

[78]  B. Depreitere,et al.  Anisotropic polyethersulfone foam for bicycle helmet liners to reduce rotational acceleration during oblique impact , 2017, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[79]  D. Karagiozova,et al.  On the dynamic compression of cellular materials with local structural softening , 2017 .

[80]  B. Depreitere,et al.  Novel Composite Foam Concept for Head Protection in Oblique Impacts   , 2017 .

[81]  L. Marșavina,et al.  Assessment of collapse diagrams of rigid polyurethane foams under dynamic loading conditions , 2017 .

[82]  Vinayshankar L. Virupaksha,et al.  Validation of Expanded Polypropylene (EPP) Foam Material Models for Low Speed Bumper and Pedestrian Protection Applications , 2017 .

[83]  Q. M. Li,et al.  Image-based correlation between the meso-scale structure and deformation of closed-cell foam , 2017 .

[84]  M. Apalak,et al.  Low velocity bending impact behavior of foam core sandwich beams: Experimental , 2017 .

[85]  M. Rodríguez-Pérez,et al.  Highly anisotropic crosslinked HDPE foams with a controlled anisotropy ratio: Production and characterization of the cellular structure and mechanical properties , 2017 .

[86]  A. Kidane,et al.  Effect of specimen size, compressibility and inertia on the response of rigid polymer foams subjected to high velocity direct impact loading , 2016 .

[87]  R. Albertoni,et al.  Quantitative characterisation of low-density, high performance polymeric foams using high resolution X-ray computed tomography and laser confocal microscopy , 2016 .

[88]  W. Paepegem,et al.  Dynamic compressive strength and crushing properties of expanded polystyrene foam for different strain rates and different temperatures , 2016 .

[89]  M. Gude,et al.  Modelling of the strain rate dependent deformation behaviour of rigid polyurethane foams , 2016 .

[90]  Jilin Yu,et al.  Dynamic crushing of cellular materials: A unique dynamic stress–strain state curve , 2016 .

[91]  A. Kidane,et al.  Characterizing the constitutive response and energy absorption of rigid polymeric foams subjected to intermediate-velocity impact , 2016 .

[92]  D. Cronin,et al.  Low density polyethylene, expanded polystyrene and expanded polypropylene: Strain rate and size effects on mechanical properties , 2016 .

[93]  R. Albertoni,et al.  Structural analysis of advanced polymeric foams by means of high resolution X-ray computed tomography , 2016 .

[94]  Jae‐Myung Lee,et al.  Application of Gurson Model for Evaluation of Density‐Dependent Mechanical Behavior of Polyurethane Foam: Comparative Study on Explicit and Implicit Method , 2016 .

[95]  S. Choi,et al.  Effect of the blowing agent on the low-temperature mechanical properties of CO2- and HFC-245fa-blown glass-fiber-reinforced polyurethane foams , 2016 .

[96]  P. Withers,et al.  The variation in elastic modulus throughout the compression of foam materials , 2016 .

[97]  Wei Yang Lu,et al.  Investigation of the dynamic stress–strain response of compressible polymeric foam using a non-parametric analysis , 2016 .

[98]  S. K. Panigrahi,et al.  Ballistic impact analyses of triangular corrugated plates filled with foam core , 2016 .

[99]  Xiangshan Chen,et al.  Characterization of the compressive deformation behavior with strain rate effect of low-density polymeric foams , 2016 .

[100]  M. Sadighi,et al.  An experimental study of high-velocity impact on elastic–plastic crushable polyurethane foams , 2016 .

[101]  Nohyu Kim,et al.  Ultrasonic Estimation and FE Analysis of Elastic Modulus of Kelvin Foam , 2016 .

[102]  K. Jeong Constitutive modeling of polymeric foams having a four-parameter modulus function with strain rate sensitivity , 2016 .

[103]  Emin Bayraktar,et al.  Effect of impactor shapes on the low velocity impact damage of sandwich composite plate: Experimental study and modelling , 2016 .

[104]  Abang Abdullah Abang Ali,et al.  Properties and applications of foamed concrete; a review , 2015 .

[105]  F. Avilés,et al.  Anisotropic compressive properties of multiwall carbon nanotube/polyurethane foams , 2015 .

[106]  Fábio A. O. Fernandes,et al.  Comparing the mechanical performance of synthetic and natural cellular materials , 2015 .

[107]  Peng Yang,et al.  Evaluation of temperature effects on low velocity impact damage in composite sandwich panels with polymeric foam cores , 2015 .

[108]  Wei Yang Lu,et al.  The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading , 2015 .

[109]  Qing Li,et al.  Crashworthiness design for functionally graded foam-filled bumper beam , 2015, Adv. Eng. Softw..

[110]  Philip A. Lockhart,et al.  Helmet liner evaluation to mitigate head response from primary blast exposure , 2015, Computer methods in biomechanics and biomedical engineering.

[111]  K. Natesaiyer,et al.  X-ray CT imaging and finite element computations of the elastic properties of a rigid organic foam compared to experimental measurements: insights into foam variability , 2015, Journal of Materials Science.

[112]  Hong Hao,et al.  Static and dynamic mechanical properties of expanded polystyrene , 2015 .

[113]  Hyonny Kim,et al.  Experimental and simulated high strain dynamic loading of polyurethane foam , 2015 .

[114]  J. Harrigan,et al.  Dynamic stress–strain states for metal foams using a 3D cellular model , 2014 .

[115]  R. Othman On the use of complex Young's modulus while processing polymeric Kolsky-Hopkinson bars' experiments , 2014 .

[116]  Yves Bienvenu,et al.  Application and future of solid foams , 2014 .

[117]  Han Zhao,et al.  Impact testing of polymeric foam using Hopkinson bars and digital image analysis , 2014 .

[118]  Stephanie C. Tornga,et al.  Morphological and Performance Measures of Polyurethane Foams Using X-Ray CT and Mechanical Testing , 2014, Microscopy and Microanalysis.

[119]  C. Siviour,et al.  Experimentally simulating high-rate behaviour: rate and temperature effects in polycarbonate and PMMA , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[120]  C. Chou,et al.  A Methodology for Characterization of the Strain Rate-Dependent Behavior of PU Foam , 2014 .

[121]  M. Avalle,et al.  Mechanical properties and impact behavior of a microcellular structural foam , 2014 .

[122]  A. Rajaneesh,et al.  Relative performance of metal and polymeric foam sandwich plates under low velocity impact , 2014 .

[123]  V. Srivastava,et al.  On the polymeric foams: modeling and properties , 2014, Journal of Materials Science.

[124]  S. Hallström,et al.  Generation of periodic stochastic foam models for numerical analysis , 2014 .

[125]  Jens Christian M. Rauhe,et al.  Evaluation of the anisotropic mechanical properties of reinforced polyurethane foams , 2013 .

[126]  I. Verpoest,et al.  Development of anisotropic foams and characterization methods for bicycle helmets , 2013 .

[127]  A. Ismail Effects of Foam Density and Wall Thickness Interactions on the Energy Absorption Performances , 2013 .

[128]  L. Marșavina,et al.  Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression , 2013, Journal of Physics: Conference Series.

[129]  D. Constantinescu,et al.  Temperature and speed of testing influence on the densification and recovery of polyurethane foams , 2013 .

[130]  I. Daniel,et al.  Characterization and modeling of stain-rate-dependent behavior of polymeric foams , 2013 .

[131]  R. A. Angélico,et al.  Experimental analyses of the poly(vinyl chloride) foams' mechanical anisotropic behavior , 2012 .

[132]  G. Ravichandran,et al.  In situ mechanical characterization during deformation of PVC polymeric foams using ultrasonics and digital image correlation , 2012 .

[133]  Byoung-Ho Choi,et al.  Observation and analysis of defromation and failure mechanisms of oriented polymeric foam materials , 2012 .

[134]  Kwang Young Jeong,et al.  A constitutive model for polyurethane foam with strain rate sensitivity , 2012 .

[135]  Volnei Tita,et al.  Numerical simulation of anisotropic polymeric foams , 2012 .

[136]  Hamid Nayeb-Hashemi,et al.  Mechanical properties of open-cell rhombic dodecahedron cellular structures , 2012 .

[137]  M. K. Khan,et al.  Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb , 2012 .

[138]  Volnei Tita,et al.  Study of an anisotropic polymeric cellular material under compression loading , 2012 .

[139]  Michele Colloca,et al.  Mechanical properties and failure mechanisms of closed-cell PVC foams , 2012 .

[140]  Vincenzo Crupi,et al.  Low-velocity impact strength of sandwich materials , 2011 .

[141]  Byoung-Ho Choi,et al.  Modeling the compressive fracture behavior of foams for energy absorption , 2011 .

[142]  I. Daniel,et al.  Strain-rate-dependent behavior of polymeric foams , 2011 .

[143]  R. Quey,et al.  Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing , 2011 .

[144]  Qing Zhou,et al.  Influence of stress softening on energy-absorption capability of polymeric foams , 2011 .

[145]  Stelios Kyriakides,et al.  Buckling and progressive crushing of laterally loaded honeycomb , 2011 .

[146]  Isaac M Daniel,et al.  Characterization of Anisotropic Polymeric Foam Under Static and Dynamic Loading , 2011 .

[147]  Gunay Anlas,et al.  Finite element analysis of expanded polystyrene foam under multiple compressive loading and unloading , 2011 .

[148]  Thomas Pardoen,et al.  Size effects in foams: Experiments and modeling , 2011 .

[149]  H. Völzke,et al.  Numerical and experimental studies of polyurethane foam under impact loading , 2011 .

[150]  Guoxing Lu,et al.  Compressive behaviour of closed-cell aluminium foams at high strain rates , 2010 .

[151]  Uttam Kumar Chakravarty,et al.  An investigation on the dynamic response of polymeric, metallic, and biomaterial foams , 2010 .

[152]  Qingming Li,et al.  Indentation into Polymeric Foams , 2010 .

[153]  M. M. Noor,et al.  Mechanical Behaviour of Polymeric Foam Core at Various Orientation Angles , 2010 .

[154]  U. Galvanetto,et al.  Static and Dynamic Energy Absorption of Aluminum Honeycombs and Polymeric Foams Composites , 2010 .

[155]  Lloyd V. Smith,et al.  Impact response of sports materials , 2010 .

[156]  G. Subhash,et al.  Effect of microscopic deformation mechanisms on the dynamic response of soft cellular materials , 2010 .

[157]  Zbisław Tabor,et al.  On the equivalence of two methods of determining fabric tensor. , 2009, Medical engineering & physics.

[158]  Yaodong Liu,et al.  A numerical study on the rate sensitivity of cellular metals , 2009 .

[159]  G. T. Lim,et al.  Numerical Simulation of Mechanical Properties of Cellular Materials Using Computed Tomography Analysis , 2009 .

[160]  D. Mohr,et al.  Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates , 2009 .

[161]  R. Rajendran,et al.  Numerical simulation of drop weight impact behaviour of closed cell aluminium foam , 2009 .

[162]  Philippe Viot,et al.  Hydrostatic compression on polypropylene foam , 2009 .

[163]  M. Alkhader,et al.  An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations , 2009 .

[164]  M. Rodríguez-Pérez,et al.  Finite element modelling of compressive mechanical behaviour of high and low density polymeric foams , 2009 .

[165]  Claudia Redenbach,et al.  Microstructure models for cellular materials , 2009 .

[166]  P. A. Brühwiler,et al.  Finite element micromechanics model of impact compression of closed-cell polymer foams , 2009 .

[167]  S. Kyriakides,et al.  On the crushing of aluminum open-cell foams: Part I. Experiments , 2009 .

[168]  Philippe Viot,et al.  Polypropylene foam behaviour under dynamic loadings : Strain rate, density and microstructure effects , 2009 .

[169]  D. Weaire,et al.  Soap, cells and statistics – random patterns in two dimensions , 2009 .

[170]  Jay C. Hanan,et al.  Tomography and Simulation of Microstructure Evolution of a Closed-Cell Polymer Foam in Compression , 2008 .

[171]  M. Maier,et al.  Structural polyurethane foam: testing and modelling for automotive applications , 2008 .

[172]  John Banhart,et al.  Porous Metals and Metallic Foams: Current Status and Recent Developments , 2008 .

[173]  Q.M. Li,et al.  Degradation of Elastic Modulus of Progressively Crushable Foams in Uniaxial Compression , 2008 .

[174]  D. Bernard,et al.  Microtomography on polypropylene foam under dynamic loading: 3D analysis of bead morphology evolution , 2008 .

[175]  Stelios Kyriakides,et al.  On the microstructure of open-cell foams and its effect on elastic properties , 2008 .

[176]  P. Greil,et al.  Microstructure and properties of LZSA glass-ceramic foams , 2008 .

[177]  R. M. Sullivan,et al.  A general tetrakaidecahedron model for open-celled foams , 2008 .

[178]  Z. Ren,et al.  Computational modelling of irregular open‐cell foam behaviour under impact loading , 2008 .

[179]  R. Mines,et al.  On the Characterisation of Foam and Micro‐lattice Materials used in Sandwich Construction 1 , 2008 .

[180]  D. Bernard,et al.  Polymeric foam deformation under dynamic loading by the use of the microtomographic technique , 2007 .

[181]  Punam K Saha,et al.  Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging. , 2007, Medical physics.

[182]  J. Harrigan,et al.  Compressive Strain at the Onset of Densification of Cellular Solids , 2006 .

[183]  Simon Ouellet,et al.  Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions , 2006 .

[184]  W. Altenhof,et al.  An experimental investigation into the cutting deformation mode of AA6061-T6 round extrusions , 2006 .

[185]  Joshua R. Smith,et al.  Validating performance of automotive materials at high strain rate for improved crash design , 2006 .

[186]  T. Frank,et al.  Material behaviour of polymers under impact loading , 2006 .

[187]  Gerald T. Seidler,et al.  Simulation of the densification of real open-celled foam microstructures , 2005 .

[188]  Ya-Peng Shen,et al.  Three-dimensional modeling of the mechanical property of linearly elastic open cell foams , 2005 .

[189]  Philippe Viot,et al.  Polymeric foam behavior under dynamic compressive loading , 2005 .

[190]  Uttam K. Chakravarty,et al.  Effect of density, microstructure, and strain rate on compression behavior of polymeric foams , 2005 .

[191]  Massimiliano Avalle,et al.  Mechanical Models of Cellular Solids, Parameters Identification from Experimental Tests , 2005 .

[192]  B. Song,et al.  SPLIT HOPKINSON PRESSURE BAR TECHNIQUES FOR CHARACTERIZING SOFT MATERIALS , 2005 .

[193]  Nancy A. Winfree,et al.  Strain-rate effects on elastic and early cell-collapse responses of a polystyrene foam , 2005 .

[194]  Stelios Kyriakides,et al.  Compressive response of open-cell foams. Part I: Morphology and elastic properties , 2005 .

[195]  E. Maire,et al.  Finite element modelling of the actual structure of cellular materials determined by X-ray tomography , 2005 .

[196]  S. Hallström,et al.  Selection of Energy Absorbing Materials for Automotive Head Impact Countermeasures , 2004 .

[197]  Fabrizio Scarpa,et al.  Dynamic properties of high structural integrity auxetic open cell foam , 2004 .

[198]  D. Mohr,et al.  Nucleation and propagation of plastic collapse bands in aluminum honeycomb , 2003 .

[199]  S. Jeelani,et al.  Strain rate effects on sandwich core materials: An experimental and analytical investigation , 2003 .

[200]  L. Carlsson,et al.  Dynamic compression of cellular cores: temperature and strain rate effects , 2002 .

[201]  Qingming Li,et al.  Strain Measures for Rigid Crushable Foam in Uniaxial Compression , 2002 .

[202]  Luc Salvo,et al.  Effect of microstructural topology upon the stiffness and strength of 2D cellular structures , 2002 .

[203]  Stephen R Reid,et al.  Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam , 2002 .

[204]  Fangyun Lu,et al.  High-strain-rate compressive behavior of a rigid polyurethane foam with various densities , 2002 .

[205]  Timothy G. Trucano,et al.  Verification and Validation in Computational Fluid Dynamics , 2002 .

[206]  Lorna J. Gibson,et al.  Size effects in ductile cellular solids. Part I: modeling , 2001 .

[207]  Chwee Teck Lim,et al.  Plastic deformation modes in rigid polyurethane foam under static loading , 2001 .

[208]  A Gilchrist,et al.  Impact deformation of rigid polymeric foams: experiments and FEA modelling , 2001 .

[209]  U. Vaidya,et al.  Processing and high strain rate impact response of multi-functional sandwich composites , 2001 .

[210]  G. Belingardi,et al.  Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram , 2001 .

[211]  Noboru Kikuchi,et al.  Constitutive modeling of polymeric foam material subjected to dynamic crash loading , 1998 .

[212]  N. S. Brar,et al.  Dynamic characterization of compliant materials using an all-polymeric split Hopkinson bar , 1998 .

[213]  Han Zhao,et al.  Testing of polymeric foams at high and medium strain rates , 1997 .

[214]  Gérard Gary,et al.  A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement , 1997 .

[215]  S. D. Papka,et al.  In-plane compressive response and crushing of honeycomb , 1994 .

[216]  L. Gibson,et al.  Anisotropy of foams , 1988 .

[217]  J. Jonas,et al.  Determination of the plastic behaviour of solid polymers at constant true strain rate , 1979 .

[218]  Andrew Nagy,et al.  Mechanical Behavior of Foamed Materials Under Dynamic Compression , 1974 .

[219]  E. Meinecke,et al.  Energy absorption in polymeric foams. I. Prediction of impact behavior from instron data for foams with rate-independent modulus , 1970 .

[220]  M. D. Goel,et al.  Blast mitigation of RC column using polymeric foam , 2020 .

[221]  M. Burman,et al.  Compression of structural foam materials – Experimental and numerical assessment of test procedure and specimen size effects , 2019 .

[222]  M. Battley,et al.  FAILURE MECHANICS OF POLYMERIC FOAM CORES FOR SANDWICH STRUCTURES , 2018 .

[223]  A. Kidane,et al.  Effects of cell-wall instability and local failure on the response of closed-cell polymeric foams subjected to dynamic loading , 2018 .

[224]  J. V. Mane,et al.  Mechanical Property Evaluation of Polyurethane Foam under Quasi-static and Dynamic Strain Rates- An Experimental Study , 2017 .

[225]  Zhihua Wang,et al.  A pressure-dependent phenomenological constitutive model for transversely isotropic foams , 2017 .

[226]  M. Kuna,et al.  Numerical and analytical solutions for anisotropic yield surfaces of the open-cell Kelvin foam , 2016 .

[227]  F. Braghin,et al.  Towards Safer Helmets: Characterisation, Modelling and Monitoring , 2016 .

[228]  Zhihua Wang,et al.  Effects of strain rate on PMMA failure behavior , 2015 .

[229]  Zi-Xing Lu,et al.  Effects of microstructure on uniaxial strength asymmetry of open-cell foams , 2015 .

[230]  Qasim Hussain Shah,et al.  Modeling large deformation and failure of expanded polystyrene crushable foam using LS-DYNA , 2014 .

[231]  Zhihua Wang,et al.  On crushing response of the three-dimensional closed-cell foam based on Voronoi model , 2014 .

[232]  A. Sabet,et al.  Study of foam density variations in composite sandwich panels under high velocity impact loading , 2014 .

[233]  Jae-Myung Lee,et al.  Failure analysis of reinforced polyurethane foam-based LNG insulation structure using damage-coupled finite element analysis , 2014 .

[234]  Örjan Smedby,et al.  Techniques for Computing Fabric Tensors: A Review , 2014, Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data.

[235]  J. Moulton,et al.  High Rate Characterization of Polymeric Closed-Cell Foams: Challenges Related to Size Effects , 2013 .

[236]  D. Pinisetty,et al.  Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: Experimental investigation and critical review of state of the art , 2013 .

[237]  S. Marguet,et al.  POLYMERIC FOAMS MODELLING BASED ON MICROSCOPIC CELL GEOMETRY FOR LIGHT SANDWICH STRUCTURE APPLICATION TO HELICOPTER BLADE IMPACT , 2012 .

[238]  E. Zaretsky,et al.  Impact response of high density flexible polyurethane foam , 2012 .

[239]  Yeon Soo Lee,et al.  Dynamic Mechanical Characteristics of Expanded Polypropylene Foams , 2010 .

[240]  Vikram Deshpande,et al.  The high strain rate response of PVC foams and end-grain balsa wood , 2008 .

[241]  V. Rizov Low velocity localized impact study of cellular foams , 2007 .

[242]  M. Fortes,et al.  Characterization of deformation bands in the compression of cellular materials , 1993 .

[243]  C. Calladine,et al.  Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure , 1984 .