Discrete Particle Swarm Optimization for the Multi-Level Lot-Sizing Problem

This paper presents a Discrete Particle Swarm Optimization (DPSO) approach for the Multi-Level Lot-Sizing Problem (MLLP), which is an uncapacitated lot sizing problem dedicated to materials requirements planning (MRP) systems. The proposed DPSO approach is based on cost modification and uses PSO in its original form with continuous velocity equations. Each particle of the swarm is represented by a matrix of logistic costs. A sequential approach heuristic, using Wagner-Whitin algorithm, is used to determine the associated production planning. The authors demonstrate that any solution of the MLLP can be reached by particles. The sequential heuristic is a subjective function from the particles space to the set of the production plans, which meet the customer's demand. The authors test the DPSO Scheme on benchmarks found in literature, more specifically the unique DPSO that has been developed to solve the MLLP.

[1]  Nicolas Jonard,et al.  Single-point stochastic search algorithms for the multi-level lot-sizing problem , 2005, Comput. Oper. Res..

[2]  R. Kuik,et al.  Multi-level lot-sizing problem: Evaluation of a simulated-annealing heuristic , 1990 .

[3]  Monica Chis,et al.  Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques , 2010 .

[4]  E. Arkin,et al.  Computational complexity of uncapacitated multi-echelon production planning problems , 1989 .

[5]  Joseph D. Blackburn,et al.  Improved heuristics for multistage requirements planning systems , 1982 .

[6]  Josephine M. Namayanja,et al.  Evaluation of Clustering Patterns using Singular Value Decomposition (SVD): A Case Study of Metabolic Syndrome , 2010, Int. J. Comput. Model. Algorithms Medicine.

[7]  Michel Gourgand,et al.  A review of tactical planning models , 2008 .

[8]  Iftikhar U. Sikder,et al.  Modeling a Classification Scheme of Epileptic Seizures Using Ontology Web Language , 2010, Int. J. Comput. Model. Algorithms Medicine.

[9]  Massimo Paolucci,et al.  A new discrete particle swarm optimization approach for the single-machine total weighted tardiness scheduling problem with sequence-dependent setup times , 2009, Eur. J. Oper. Res..

[10]  Soon Ae Chun,et al.  Social Credential-Based Role Recommendation and Patient Privacy Control in Medical Emergency , 2011, Int. J. Comput. Model. Algorithms Medicine.

[11]  James H. Bookbinder,et al.  Production planning for mixed assembly/arborescent systems , 1990 .

[12]  Dilza Szwarcman,et al.  Synthesis of Object-Oriented Software Structural Models Using Quality Metrics And Co-Evolutionary Genetic Algorithms , 2010 .

[13]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[14]  Zong Woo Geem Research Commentary: Survival of the Fittest Algorithm or the Novelest Algorithm? , 2010, Int. J. Appl. Metaheuristic Comput..

[15]  Nafee Rizk,et al.  SUPPLY CHAIN FLOW PLANNING METHODS: A REVIEW OF THE LOT-SIZING LITERATURE , 2001 .

[16]  József Vörös On the relaxation of multi-level dynamic lot-sizing models , 2002 .

[17]  Laiq Khan,et al.  Online Adaptive Neuro-Fuzzy Based Full Car Suspension Control Strategy , 2013 .

[18]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[19]  Bezalel Gavish,et al.  Optimal Lot-Sizing Algorithms for Complex Product Structures , 1986, Oper. Res..

[20]  Jiaxuan Li,et al.  Human Oral Bioavailability Prediction of Four Kinds of Drugs , 2012, Int. J. Comput. Model. Algorithms Medicine.

[21]  Willard I. Zangwill,et al.  A Deterministic Multiproduct, Multi-Facility Production and Inventory Model , 1966, Oper. Res..

[22]  Yuhui Shi,et al.  Experimental Study on Boundary Constraints Handling in Particle Swarm Optimization: From Population Diversity Perspective , 2011, Int. J. Swarm Intell. Res..

[23]  Jully Jeunet,et al.  Randomized multi-level lot-sizing heuristics for general product structures , 2003, Eur. J. Oper. Res..

[24]  Jatinder N. D. Gupta,et al.  Determining lot sizes and resource requirements: A review , 1987 .

[25]  G. Bitran,et al.  Computational Complexity of the Capacitated Lot Size Problem , 1982 .

[26]  Claus E. Heinrich,et al.  Multi-Stage Lot-Sizing for General Production Systems , 1986 .

[27]  M. Ioualalen,et al.  Les Symétries dans les Réseaux de Petri Stochastiques (RdPS) Construction du Graphe Symbolique , 2000, RAIRO Oper. Res..

[28]  Aryya Gangopadhyay Innovations in Data Methodologies and Computational Algorithms for Medical Applications , 2012 .

[29]  Nicolas Jonard,et al.  A genetic algorithm to solve the general multi-level lot-sizing problem with time-varying costs , 2000 .

[30]  Zong Woo Geem,et al.  Research Commentary Survival of the Fittest Algorithm or the Novelest Algorithm?: The Existence Reason of the Harmony Search Algorithm , 2012 .

[31]  Emre A. Veral,et al.  THE PERFORMANCE OF A SIMPLE INCREMENTAL LOT‐SIZING RULE IN A MULTILEVEL INVENTORY ENVIRONMENT , 1985 .

[32]  Pandian Vasant Handbook of Research on Novel Soft Computing Intelligent Algorithms: Theory and Practical Applications , 2013 .

[33]  Mehmet Fatih Tasgetiren,et al.  Particle Swarm Optimization Algorithm for Permutation Flowshop Sequencing Problem , 2004, ANTS Workshop.

[34]  Herbert E. Scarf,et al.  Optimal Policies for a Multi-Echelon Inventory Problem , 1960, Manag. Sci..

[35]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[36]  Ikou Kaku,et al.  Solving uncapacitated multilevel lot-sizing problems using a particle swarm optimization with flexible inertial weight , 2009, Comput. Math. Appl..

[37]  Maurice Clerc,et al.  Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman Problem , 2004 .

[38]  Ashish Joshi,et al.  Prevalence of Metabolic Syndrome in Subjects with Osteoarthritis Stratified by Age and Sex: A Cross Sectional Analysis in NHANES III , 2010, Int. J. Comput. Model. Algorithms Medicine.

[39]  Alf Kimms,et al.  Lot sizing and scheduling -- Survey and extensions , 1997 .

[40]  Pijush Samui,et al.  Multivariate Adaptive Regression Spline and Least Square Support Vector Machine for Prediction of Undrained Shear Strength of Clay , 2012, Int. J. Appl. Metaheuristic Comput..

[41]  Peng-Yeng Yin Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends , 2012 .

[42]  Russell C. Eberhart,et al.  Recent advances in particle swarm , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[43]  Jully Jeunet,et al.  Solving large unconstrained multilevel lot-sizing problems using a hybrid genetic algorithm , 2000 .

[44]  Harvey M. Wagner,et al.  Dynamic Version of the Economic Lot Size Model , 2004, Manag. Sci..

[45]  Richard F. Hartl,et al.  A MAX-MIN ant system for unconstrained multi-level lot-sizing problems , 2007, Comput. Oper. Res..

[46]  Amir Nakib,et al.  A New Multiagent Algorithm for Dynamic Continuous Optimization , 2010, Int. J. Appl. Metaheuristic Comput..

[47]  Jatinder N. D. Gupta,et al.  OR Practice - Determining Lot Sizes and Resource Requirements: A Review , 1987, Oper. Res..

[48]  Laurence A. Wolsey,et al.  bc -- prod: A Specialized Branch-and-Cut System for Lot-Sizing Problems , 2000 .

[49]  Ou Tang,et al.  Simulated annealing in lot sizing problems , 2004 .