Viriato: A Fourier-Hermite spectral code for strongly magnetized fluid-kinetic plasma dynamics

Abstract We report on the algorithms and numerical methods used in Viriato , a novel fluid–kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations (Zocco and Schekochihin, 2011) (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations (Schekochihin et al., 2009). Two main applications of these equations are magnetized (Alfvenic) plasma turbulence and magnetic reconnection. Viriato  uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato  allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge–Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato  is pseudo-spectral, and the time integration is performed by means of an iterative predictor–corrector scheme. In addition, a distinctive feature of Viriato  is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag–Tang-type decaying turbulence, both in fluid and kinetic regimes.

[1]  Frank Jenko,et al.  Aspects of linear Landau damping in discretized systems , 2013 .

[2]  G. Hammett,et al.  A Landau fluid model for electromagnetic plasma microturbulence , 2001 .

[3]  William Dorland,et al.  Astrophysical Gyrokinetics: Basic Equations and Linear Theory , 2005, astro-ph/0511812.

[4]  Michael Barnes,et al.  AstroGK: Astrophysical gyrokinetics code , 2010, J. Comput. Phys..

[5]  J. Buchner,et al.  Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows , 2015, 1504.01351.

[6]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[7]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[8]  F. Parra,et al.  Critically balanced ion temperature gradient turbulence in fusion plasmas. , 2011, Physical review letters.

[9]  W. Dorland,et al.  ASTROPHYSICAL GYROKINETICS: KINETIC AND FLUID TURBULENT CASCADES IN MAGNETIZED WEAKLY COLLISIONAL PLASMAS , 2007, 0704.0044.

[10]  Burton D. Fried,et al.  The Plasma Dispersion Function , 1961 .

[11]  E. Schwarz,et al.  On Two-Dimensional Magnetohydrodynamic Turbulence , 2001 .

[12]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[13]  Laurent Villard,et al.  Gyrokinetic simulations of turbulent transport , 2010 .

[14]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[15]  F. Jenko,et al.  Phase space scales of free energy dissipation in gradient-driven gyrokinetic turbulence , 2014, Journal of Plasma Physics.

[16]  T. Hou Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier–Stokes equations , 2009, Acta Numerica.

[17]  Magdi Shoucri,et al.  Plasma simulation as eigenvalue problem , 1974 .

[18]  A. A. Schekochihin,et al.  Instability of current sheets and formation of plasmoid chains , 2007 .

[19]  W. Dorland,et al.  Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows , 2012, Reports on progress in physics. Physical Society.

[20]  B. Haisch,et al.  Flares on the Sun and Other Stars , 1991 .

[21]  F. Jenko,et al.  Gyrokinetic simulations of magnetic reconnection , 2011 .

[22]  S. Boldyrev,et al.  SPECTRUM OF KINETIC-ALFVÉN TURBULENCE , 2012, 1204.5809.

[23]  S. Schwartz,et al.  Universality of solar-wind turbulent spectrum from MHD to electron scales. , 2009, Physical review letters.

[24]  W. Dorland,et al.  Gyrokinetic simulations of solar wind turbulence from ion to electron scales. , 2011, Physical review letters.

[25]  Nuno F. Loureiro,et al.  An iterative semi-implicit scheme with robust damping , 2007, J. Comput. Phys..

[26]  Francesco Pegoraro,et al.  Generalized two-fluid theory of nonlinear magnetic structures , 1994 .

[27]  M. Feix,et al.  TRANSITION BETWEEN LANDAU AND VAN KAMPEN TREATMENTS OF THE VLASOV EQUATION. , 1967 .

[28]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[29]  W. Dorland,et al.  Gyrokinetic simulations of collisionless magnetic reconnection , 2007 .

[30]  William Dorland,et al.  Gyrofluid turbulence models with kinetic effects , 1993 .

[31]  Livio Gibelli,et al.  Spectral convergence of the Hermite basis function solution of the Vlasov equation: The free-streaming term , 2006, J. Comput. Phys..

[32]  D. Durran Numerical Methods for Fluid Dynamics: With Applications to Geophysics , 2010 .

[33]  K. Shibata,et al.  Solar Flares: Magnetohydrodynamic Processes , 2011 .

[34]  T. Horbury,et al.  Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. , 2005, Physical review letters.

[35]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[36]  Jim Euchner Design , 2014, Catalysis from A to Z.

[37]  Paul J. Dellar,et al.  Lattice Boltzmann magnetohydrodynamics with current-dependent resistivity , 2013, J. Comput. Phys..

[38]  J. Krommes,et al.  The Gyrokinetic Description of Microturbulence in Magnetized Plasmas , 2012 .

[39]  W. Horton,et al.  Collisionless kinetic-fluid closure and its application to the three-mode ion temperature gradient driven system , 2001 .

[40]  A. Pouquet On two-dimensional magnetohydrodynamic turbulence , 1978, Journal of Fluid Mechanics.

[41]  Steven A. Orszag,et al.  On the Elimination of Aliasing in Finite-Difference Schemes by Filtering High-Wavenumber Components , 1971 .

[42]  S. Orszag,et al.  SPECTRA IN HELICAL THREE-DIMENSIONAL HOMOGENEOUS ISOTROPIC TURBULENCE , 1997 .

[43]  G. Plunk,et al.  Irreversible energy flow in forced Vlasov dynamics , 2014, 1402.7230.

[44]  J. Krommes,et al.  Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields , 2001 .

[45]  D. Biskamp,et al.  Dynamics of Decaying Two-Dimensional Magnetohydrodynamic Turbulence , 1988 .

[46]  A. Schekochihin,et al.  Plasmoid and Kelvin-Helmholtz instabilities in Sweet-Parker current sheets. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  A. Barnes Collisionless Damping of Hydromagnetic Waves , 1966 .

[48]  Francesco Porcelli,et al.  Simple analysis of the nonlinear saturation of the tearing mode , 2004 .

[49]  C. Giroud,et al.  The H-mode pedestal, ELMs and TF ripple effects in JT-60U/JET dimensionless identity experiments , 2007 .

[50]  G. Joyce,et al.  Numerical integration methods of the Vlasov equation , 1971 .

[51]  N. Loureiro,et al.  Ion and electron heating during magnetic reconnection in weakly collisional plasmas , 2014, Journal of Plasma Physics.

[52]  E. Frieman,et al.  Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .

[53]  W. Dorland,et al.  Kinetic simulations of magnetized turbulence in astrophysical plasmas. , 2007, Physical review letters.

[54]  R. Fadanelli,et al.  Coulomb heating behavior of fast light diclusters thorough the Si ⟨ 110 ⟩ direction: influence of the mean charge state , 2014, The European Physical Journal D.

[55]  J. Wesson,et al.  Finite resistivity instabilities of a sheet pinch , 1966 .

[56]  Paul J. Dellar,et al.  Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit , 2014, Journal of Plasma Physics.

[57]  W. Dorland,et al.  Fluctuation-dissipation relations for a plasma-kinetic Langevin equation , 2014, Journal of Plasma Physics.

[58]  F. Jenko,et al.  Transition between saturation regimes of gyrokinetic turbulence. , 2013, Physical review letters.

[59]  William Dorland,et al.  Landau fluid models of collisionless magnetohydrodynamics , 1997 .

[60]  Ruo Li,et al.  Computing nearly singular solutions using pseudo-spectral methods , 2007, J. Comput. Phys..

[61]  H. R. Strauss,et al.  Nonlinear, three‐dimensional magnetohydrodynamics of noncircular tokamaks , 1976 .

[62]  D. Uzdensky The Fast Collisionless Reconnection Condition and the Self-Organization of Solar Coronal Heating , 2007, 0707.1316.

[63]  William Dorland,et al.  An oscillating Langevin antenna for driving plasma turbulence simulations , 2013, Comput. Phys. Commun..

[64]  Perkins,et al.  Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. , 1990, Physical review letters.

[65]  W. Dorland,et al.  Gyrokinetic simulations of the tearing instability , 2011, 1107.5842.

[66]  A. Schekochihin,et al.  Turbulent Magnetic Reconnection in Two Dimensions , 2009, 0904.0823.

[67]  K. Schindler,et al.  A theory of the substorm mechanism , 1974 .

[68]  D. Leneman,et al.  Design, construction, and properties of the large plasma research device : the LAPD at UCLA , 1991 .

[69]  R. Maccormack The Effect of Viscosity in Hypervelocity Impact Cratering , 1969 .

[70]  R. Samtaney Numerical aspects of drift kinetic turbulence: ill-posedness, regularization and a priori estimates of sub-grid-scale terms , 2012 .

[71]  Marc R. Feix,et al.  Fourier‐Hermite Solutions of the Vlasov Equations in the Linearized Limit , 1967 .

[72]  M. Ottaviani,et al.  Simple and rigorous solution for the nonlinear tearing mode , 2004 .

[73]  Magnetic Interaction Between Stars And Accretion Disks , 2003, astro-ph/0310104.

[74]  Annick Pouquet,et al.  Current and vorticity dynamics in three‐dimensional magnetohydrodynamic turbulence , 1995 .

[75]  Vincenzo Carbone,et al.  The Solar Wind as a Turbulence Laboratory , 2005 .

[76]  Saul A. Teukolsky Stability of the iterated Crank-Nicholson method in numerical relativity , 2000 .

[77]  W. Dorland,et al.  Collisionless reconnection in the large guide field regime: Gyrokinetic versus particle-in-cell simulations , 2013, 1312.5166.

[78]  C. Roach,et al.  Kinetic microtearing modes and reconnecting modes in strongly magnetised slab plasmas , 2014, 1411.5604.

[79]  Markus J. Aschwanden,et al.  The New Solar Corona , 2001 .

[80]  P. S. Iroshnikov Turbulence of a conducting fluid in a strong magnetic field , 1963 .

[81]  Sergio Pirozzoli,et al.  Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction , 2002 .

[82]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[83]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[84]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[85]  William Dorland,et al.  Developments in the gyrofluid approach to Tokamak turbulence simulations , 1993 .

[86]  R. Grauer,et al.  Numerical simulations of possible finite time singularities in the incompressible Euler equations : Comparison of numerical methods , 2007, 0711.2284.

[87]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[88]  D. Durran Numerical Methods for Fluid Dynamics , 2010 .

[89]  A. Schekochihin,et al.  Fast collisionless reconnection and electron heating in strongly magnetized plasmas. , 2013, Physical review letters.

[90]  A. Schekochihin,et al.  Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas , 2011, 1104.4622.

[91]  J. McWilliams,et al.  Coherent structures and turbulent cascades in two‐dimensional incompressible magnetohydrodynamic turbulence , 1995 .