Genotypic and Phenotypic Heterogeneity in Amyotrophic Lateral Sclerosis

[1]  A. Hamacher-Brady,et al.  Systemic deregulation of autophagy upon loss of ALS- and FTD-linked C9orf72 , 2017, Autophagy.

[2]  Annelot M. Dekker,et al.  NEK1 variants confer susceptibility to amyotrophic lateral sclerosis , 2016, Nature Genetics.

[3]  Annelot M. Dekker,et al.  Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis , 2016, Nature Genetics.

[4]  E. Buratti,et al.  Physiological functions and pathobiology of TDP‐43 and FUS/TLS proteins , 2016, Journal of neurochemistry.

[5]  Richard J Barohn,et al.  Patterns of Weakness, Classification of Motor Neuron Disease, and Clinical Diagnosis of Sporadic Amyotrophic Lateral Sclerosis. , 2015, Neurologic clinics.

[6]  D. Neary,et al.  Distinct clinical and pathological phenotypes in frontotemporal dementia associated with MAPT, PGRN and C9orf72 mutations , 2015, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[7]  Brittany N. Lasseigne,et al.  Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.

[8]  G. Lettre,et al.  Rare variant association studies: considerations, challenges and opportunities , 2015, Genome Medicine.

[9]  W. Robberecht,et al.  The phenotypic variability of amyotrophic lateral sclerosis , 2014, Nature Reviews Neurology.

[10]  G. Abecasis,et al.  Rare-variant association analysis: study designs and statistical tests. , 2014, American journal of human genetics.

[11]  Patrick G. Shaw,et al.  C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease , 2014, Nature.

[12]  P. Gleeson,et al.  C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking , 2014, Human molecular genetics.

[13]  T. Ideker,et al.  Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders , 2014, Science.

[14]  P. McColgan,et al.  C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies , 2014, Neurology.

[15]  Adriano Chiò,et al.  State of play in amyotrophic lateral sclerosis genetics , 2013, Nature Neuroscience.

[16]  D. Morris,et al.  Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing , 2013, Journal of Medical Genetics.

[17]  A. Chiò,et al.  Global Epidemiology of Amyotrophic Lateral Sclerosis: A Systematic Review of the Published Literature , 2013, Neuroepidemiology.

[18]  O. Hardiman,et al.  Using Reference Databases of Genetic Variation to Evaluate the Potential Pathogenicity of Candidate Disease Variants , 2013, Human mutation.

[19]  B. Traynor,et al.  Screening for C9orf72 repeat expansions in parkinsonian syndromes , 2013, Neurobiology of Aging.

[20]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[21]  P. Johannsen,et al.  Corticobasal and ataxia syndromes widen the spectrum of C9ORF72 hexanucleotide expansion disease , 2013, Clinical genetics.

[22]  Nick C Fox,et al.  Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. , 2013, American journal of human genetics.

[23]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[24]  F. Pasquier,et al.  C9orf72 repeat expansions are a rare genetic cause of parkinsonism. , 2013, Brain : a journal of neurology.

[25]  A. Chiò,et al.  Extensive genetics of ALS , 2012, Neurology.

[26]  Olubunmi Abel,et al.  ALSoD: A user‐friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics , 2012, Human mutation.

[27]  W. Rossoll,et al.  The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. , 2012, Human molecular genetics.

[28]  A. Al-Chalabi,et al.  The genetics and neuropathology of amyotrophic lateral sclerosis , 2012, Acta Neuropathologica.

[29]  T. Wieland,et al.  Exome sequencing identifies a REEP1 mutation involved in distal hereditary motor neuropathy type V. , 2012, American journal of human genetics.

[30]  Jacob A. Tennessen,et al.  Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes , 2012, Science.

[31]  P. Rossini,et al.  Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease , 2012, Neurology.

[32]  S. C. Chafe,et al.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis , 2012, Nature.

[33]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[34]  A. Al-Chalabi,et al.  Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study , 2012, The Lancet Neurology.

[35]  Y. Pijnenburg,et al.  The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. , 2012, Brain : a journal of neurology.

[36]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[37]  S. Servidei,et al.  P525L FUS mutation is consistently associated with a severe form of juvenile Amyotrophic Lateral Sclerosis , 2012, Neuromuscular Disorders.

[38]  A. Singleton,et al.  Repeat expansion in C9ORF72 in Alzheimer's disease. , 2012, The New England journal of medicine.

[39]  S. Warren,et al.  Local RNA Translation at the Synapse and in Disease , 2011, The Journal of Neuroscience.

[40]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[41]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[42]  Ammar Al-Chalabi,et al.  Clinical genetics of amyotrophic lateral sclerosis: what do we really know? , 2011, Nature Reviews Neurology.

[43]  A. Al-Chalabi,et al.  The risk to relatives of patients with sporadic amyotrophic lateral sclerosis , 2011, Brain : a journal of neurology.

[44]  C. Lewis,et al.  Modelling the Effects of Penetrance and Family Size on Rates of Sporadic and Familial Disease , 2011, Human Heredity.

[45]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[46]  O. Hardiman,et al.  Proposed criteria for familial amyotrophic lateral sclerosis , 2011, Amyotrophic Lateral Sclerosis.

[47]  E. Huey,et al.  FTD and ALS: a tale of two diseases. , 2011, Current Alzheimer research.

[48]  A. Chiò,et al.  Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study , 2011, Journal of Neurology, Neurosurgery & Psychiatry.

[49]  Sonja W. Scholz,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2010, Neuron.

[50]  A. Al-Chalabi,et al.  An estimate of amyotrophic lateral sclerosis heritability using twin data , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[51]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[52]  G. Bernardi,et al.  SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis , 2010, Brain : a journal of neurology.

[53]  J. V. van Swieten,et al.  Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration , 2009, Journal of Neurology.

[54]  H. Kretzschmar,et al.  A new subtype of frontotemporal lobar degeneration with FUS pathology. , 2009, Brain : a journal of neurology.

[55]  D. Munoz,et al.  FUS pathology in basophilic inclusion body disease , 2009, Acta Neuropathologica.

[56]  J. Landers,et al.  Analysis of FUS gene mutation in familial amyotrophic lateral sclerosis within an Italian cohort , 2009, Neurology.

[57]  P. Sparén,et al.  Familial aggregation of amyotrophic lateral sclerosis , 2009, Annals of neurology.

[58]  M. Hernán,et al.  Incidence and lifetime risk of motor neuron disease in the United Kingdom: a population‐based study , 2009, European journal of neurology.

[59]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[60]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[61]  Robert H. Brown,et al.  Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. , 2009, American journal of human genetics.

[62]  P. Tonali,et al.  SOD1 G93D mutation presenting as paucisymptomatic amyotrophic lateral sclerosis , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[63]  I-Fan Wang,et al.  TDP‐43, the signature protein of FTLD‐U, is a neuronal activity‐responsive factor , 2008, Journal of neurochemistry.

[64]  Murray Grossman,et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis , 2008, The Lancet Neurology.

[65]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[66]  E. Beghi,et al.  Descriptive epidemiology of amyotrophic lateral sclerosis: new evidence and unsolved issues , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.

[67]  J. Ravits,et al.  Focality of upper and lower motor neuron degeneration at the clinical onset of ALS , 2007, Neurology.

[68]  K. Talbot,et al.  The molecular genetics of non-ALS motor neuron diseases. , 2006, Biochimica et biophysica acta.

[69]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[70]  M. Pericak-Vance,et al.  Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. , 2006, American journal of human genetics.

[71]  S. Ennis,et al.  ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis , 2006, Nature Genetics.

[72]  G. Hicks,et al.  The RNA Binding Protein TLS Is Translocated to Dendritic Spines by mGluR5 Activation and Regulates Spine Morphology , 2005, Current Biology.

[73]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[74]  John W Griffin,et al.  DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). , 2004, American journal of human genetics.

[75]  Robert H. Brown,et al.  Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. , 2003, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[76]  A Nalini,et al.  Early or late appearance of “dropped head syndrome” in amyotrophic lateral sclerosis , 2003, Journal of neurology, neurosurgery, and psychiatry.

[77]  M. Pericak-Vance,et al.  The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis , 2001, Nature Genetics.

[78]  S. Scherer,et al.  A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2 , 2001, Nature Genetics.

[79]  R. Orrell,et al.  Clinical characteristics of SOD1 gene mutations in UK families with ALS , 1999, Journal of the Neurological Sciences.

[80]  P. Sham,et al.  Recessive amyotrophic lateral sclerosis families with the D90A SOD1 mutation share a common founder: evidence for a linked protective factor. , 1998, Human molecular genetics.

[81]  H. Horvitz,et al.  Epidemiology of mutations in superoxide dismutase in amyotrophic lateal sclerosis , 1997, Annals of neurology.

[82]  M. Pericak-Vance,et al.  Prognosis in Familial Amyotrophic Lateral Sclerosis , 1997, Neurology.

[83]  P. Andersen,et al.  Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. , 1996, Brain : a journal of neurology.

[84]  Y. Itoyama,et al.  Mild ALS in Japan associated with novel SOD mutation , 1993, Nature Genetics.

[85]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[86]  J. Riggs Longitudinal Gompertzian analysis of amyotrophic lateral sclerosis mortality in the U.S., 1977–1986: Evidence for an inherently susceptible population subset , 1990, Mechanisms of Ageing and Development.

[87]  I. Fridovich,et al.  Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). , 1969, The Journal of biological chemistry.

[88]  L. Kurland,et al.  Epidemiologic Investigations of Amyotrophic Lateral Sclerosis , 1955, Neurology.