Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data

Abstract We define a numerical method that provides a non-parametric estimation of the kernel shape in symmetric multivariate Hawkes processes. This method relies on second order statistical properties of Hawkes processes that relate the covariance matrix of the process to the kernel matrix. The square root of the correlation function is computed using a minimal phase recovering method. We illustrate our method on some examples and provide an empirical study of the estimation errors. Within this framework, we analyze high frequency financial price data modeled as 1D or 2D Hawkes processes. We find slowly decaying (power-law) kernel shapes suggesting a long memory nature of self-excitation phenomena at the microstructure level of price dynamics.

[1]  N. Wiener,et al.  Fourier Transforms in the Complex Domain , 1934 .

[2]  M. Bartlett The Spectral Analysis of Point Processes , 1963 .

[3]  M. S. Bartlett,et al.  The spectral analysis of two-dimensional point processes , 1964 .

[4]  D. Vere-Jones Stochastic Models for Earthquake Occurrence , 1970 .

[5]  A. Hawkes Point Spectra of Some Mutually Exciting Point Processes , 1971 .

[6]  A. Hawkes Spectra of some self-exciting and mutually exciting point processes , 1971 .

[7]  L. Adamopoulos Cluster models for earthquakes: Regional comparisons , 1976 .

[8]  T. Ozaki Maximum likelihood estimation of Hawkes' self-exciting point processes , 1979 .

[9]  Yosihiko Ogata,et al.  On Lewis' simulation method for point processes , 1981, IEEE Trans. Inf. Theory.

[10]  H. Akaike,et al.  On Linear Intensity Models for Mixed Doubly Stochastic Poisson and Self-exciting Point Processes , 1982 .

[11]  D. Vere-Jones,et al.  Some examples of statistical estimation applied to earthquake data , 1982 .

[12]  Alan V. Oppenheim,et al.  Discrete-time signal processing (2nd ed.) , 1999 .

[13]  Y. Ogata Seismicity Analysis through Point-process Modeling: A Review , 1999 .

[14]  D. Sornette,et al.  Subcritical and supercritical regimes in epidemic models of earthquake aftershocks , 2001, cond-mat/0109318.

[15]  Clive G. Bowsher Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models , 2003 .

[16]  D. Vere-Jones,et al.  Stochastic Declustering of Space-Time Earthquake Occurrences , 2002 .

[17]  Didier Sornette,et al.  Critical Market Crashes , 2003, cond-mat/0301543.

[18]  A. C. Davison,et al.  Estimating value-at-risk: a point process approach , 2005 .

[19]  Patrick Hewlett Clustering of order arrivals , price impact and trade path optimisation , 2006 .

[20]  Zbigniew R Struzik,et al.  Criticality and phase transition in stock-price fluctuations. , 2006, Physical review letters.

[21]  Luc Bauwens,et al.  Département des Sciences Économiques de l'Université catholique de Louvain Modelling Financial High Frequency Data Using Point Processes , 2019 .

[22]  Jeremy H. Large Measuring the resiliency of an electronic limit order book , 2007 .

[23]  D. Marsan,et al.  Extending Earthquakes' Reach Through Cascading , 2008, Science.

[24]  Kay Giesecke,et al.  A Top-Down Approach to Multi-Name Credit , 2009 .

[25]  Thomas Josef Liniger,et al.  Multivariate Hawkes processes , 2009 .

[26]  Ioane Muni Toke,et al.  "Market making" behaviour in an order book model and its impact on the bid-ask spread , 2010, 1003.3796.

[27]  P. Reynaud-Bouret,et al.  Adaptive estimation for Hawkes processes; application to genome analysis , 2009, 0903.2919.

[28]  Emmanuel Bacry,et al.  Modelling microstructure noise with mutually exciting point processes , 2011, 1101.3422.

[29]  George E. Tita,et al.  Self-Exciting Point Process Modeling of Crime , 2011 .

[30]  Xiaowei Ding,et al.  A Top-Down Approach to Multiname Credit , 2011, Oper. Res..

[31]  Modelling microstructure noise with Hawkes processes , 2011 .

[32]  P. Embrechts,et al.  Multivariate Hawkes processes: an application to financial data , 2011, Journal of Applied Probability.

[33]  Erik A. Lewis,et al.  RESEARCH ARTICLE A Nonparametric EM algorithm for Multiscale Hawkes Processes , 2011 .

[34]  Emmanuel Bacry,et al.  Scaling limits for Hawkes processes and application to financial statistics , 2012, 1202.0842.

[35]  Erik A. Lewis,et al.  Self-exciting point process models of civilian deaths in Iraq , 2011, Security Journal.

[36]  Khalil Dayri,et al.  Market Microstructure and Modeling of the Trading Flow , 2012 .