EXPECTED UNCERTAIN UTILITY THEORY

We introduce and analyze expected uncertain utility (EUU) theory. A prior and an interval utility characterize an EUU decision maker. The decision maker transforms each uncertain prospect into an interval-valued prospect that assigns an interval of prizes to each state. She then ranks prospects according to their expected interval utilities. We define uncertainty aversion for EUU, use the EUU model to address the Ellsberg Paradox and other ambiguity evidence, and relate EUU theory to existing models.

[1]  J. Jaffray Linear utility theory for belief functions , 1989 .

[2]  Ramon Casadesus-Masanell,et al.  Maxmin Expected Utility over Savage Acts with a Set of Priors , 2000, J. Econ. Theory.

[3]  Olivier L’Haridon,et al.  Betting on Machina’s reflection example: an experiment on ambiguity , 2010 .

[4]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[5]  P. Wakker Savage's Axioms Usually Imply Violation of Strict Stochastic Dominance , 1993 .

[6]  Faruk Gul,et al.  Expected Uncertain Utility and Multiple Sources † , 2010 .

[7]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[8]  Itzhak Gilboa,et al.  Additive representations of non-additive measures and the choquet integral , 1994, Ann. Oper. Res..

[9]  I. Gilboa Expected utility with purely subjective non-additive probabilities , 1987 .

[10]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[11]  Wojciech Olszewski,et al.  Preferences over Sets of Lotteries , 2006 .

[12]  J. Schreiber Foundations Of Statistics , 2016 .

[13]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[14]  Mark J. Machina,et al.  Risk, Ambiguity, and the Rank-Dependence Axioms , 2009 .

[15]  Simon Grant,et al.  A matter of interpretation: Ambiguous contracts and liquidated damages , 2014, Games Econ. Behav..

[16]  Wojciech Olszewski,et al.  Preferences Over Sets of Lotteries -super-1 , 2007 .

[17]  João Correia-da-Silva Non-existence of general equilibrium with EUU preferences , 2014 .

[18]  K. Arrow Essays in the theory of risk-bearing , 1958 .

[19]  Massimo Marinacci,et al.  Ambiguity Made Precise: A Comparative Foundation , 1998, J. Econ. Theory.

[20]  David S. Ahn Ambiguity without a state space , 2004 .

[21]  Massimo Marinacci,et al.  Uncertainty averse preferences , 2011, J. Econ. Theory.

[22]  Jiankang Zhang,et al.  Subjective ambiguity, expected utility and Choquet expected utility , 2002 .

[23]  Kyoungwon Seo,et al.  Exchangeable capacities, parameters and incomplete theories , 2015, J. Econ. Theory.

[24]  V. Strassen,et al.  Me\fehler und Information , 1964 .

[25]  Marciano M. Siniscalchi,et al.  Vector Expected Utility and Attitudes Toward Variation , 2008 .

[26]  J. Jaffray,et al.  Decision making with belief functions: Compatibility and incompatibility with the sure-thing principle , 1993 .

[27]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[28]  Larry G. Epstein,et al.  Subjective Probabilities on Subjectively Unambiguous Events , 2001 .

[29]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[30]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[31]  Laetitia Placido,et al.  Ambiguity models and the machina paradoxes , 2011 .

[32]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[33]  Ehud Lehrer,et al.  Partially-Specified Probabilities: Decisions and Games , 2006 .

[34]  Massimo Marinacci,et al.  Differentiating ambiguity and ambiguity attitude , 2004, J. Econ. Theory.

[35]  D. Schmeidler,et al.  A More Robust Definition of Subjective Probability , 1992 .

[36]  Uzi Segal,et al.  Two Stage Lotteries Without the Reduction Axiom , 1990 .

[37]  Haluk Ergin,et al.  A theory of subjective compound lotteries , 2009, J. Econ. Theory.

[38]  W. M. Gorman The Structure of Utility Functions , 1968 .

[39]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[40]  Robert F. Nau,et al.  Uncertainty Aversion with Second-Order Utilities and Probabilities , 2006, Manag. Sci..

[41]  R. P. Dilworth Review: G. Birkhoff, Lattice theory , 1950 .