TRPA1 channels promote astrocytic Ca2+ hyperactivity and synaptic dysfunction mediated by oligomeric forms of amyloid-β peptide

[1]  Liam Bray Activated , 2018, Proceedings of the 30th Australian Conference on Computer-Human Interaction.

[2]  B. MacVicar,et al.  Ca2+ transients in astrocyte fine processes occur via Ca2+ influx in the adult mouse hippocampus , 2016, Glia.

[3]  C. Giaume,et al.  Astroglial connexin43 contributes to neuronal suffering in a mouse model of Alzheimer’s disease , 2016, Cell Death and Differentiation.

[4]  Hui-Ching Lin,et al.  Role of transient receptor potential ankyrin 1 channels in Alzheimer’s disease , 2016, Journal of Neuroinflammation.

[5]  Kenji F. Tanaka,et al.  Subcellular calcium dynamics during juvenile development in mouse hippocampal astrocytes , 2016, The European journal of neuroscience.

[6]  Eric Karran,et al.  The Cellular Phase of Alzheimer’s Disease , 2016, Cell.

[7]  Shaomin Li,et al.  Soluble Aβ oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance , 2016, Neurobiology of Disease.

[8]  Arthur Konnerth,et al.  Neuronal hyperactivity – A key defect in Alzheimer's disease? , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[9]  L. Roux,et al.  Activated microglia impairs neuroglial interaction by opening Cx43 hemichannels in hippocampal astrocytes , 2015, Glia.

[10]  Sharmila Venugopal,et al.  Ca2+ signaling in astrocytes from IP3R2−/− mice in brain slices and during startle responses in vivo , 2015, Nature Neuroscience.

[11]  E. Hol,et al.  Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction , 2014, Neurobiology of Aging.

[12]  Marco Foddis,et al.  Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model , 2014, Nature Communications.

[13]  G. Juhász,et al.  Abeta(1-42) Enhances Neuronal Excitability in the CA1 via NR2B Subunit-Containing NMDA Receptors , 2014, Neural plasticity.

[14]  Martin D. Haustein,et al.  Conditions and Constraints for Astrocyte Calcium Signaling in the Hippocampal Mossy Fiber Pathway , 2014, Neuron.

[15]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[16]  A. Verkhratsky,et al.  TRP channels coordinate ion signalling in astroglia. , 2014, Reviews of physiology, biochemistry and pharmacology.

[17]  Neela K. Codadu,et al.  α7 Nicotinic Receptor-Mediated Astrocytic Gliotransmitter Release: Aβ Effects in a Preclinical Alzheimer’s Mouse Model , 2013, PloS one.

[18]  Vadim Turlapov,et al.  Subcellular location of astrocytic calcium stores favors extrasynaptic neuron-astrocyte communication. , 2013, Cell calcium.

[19]  S. Lipton,et al.  Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss , 2013, Proceedings of the National Academy of Sciences.

[20]  Robert T. R. Huckstepp,et al.  TRPA1 Channels Are Regulators of Astrocyte Basal Calcium Levels and Long-Term Potentiation via Constitutive d-Serine Release , 2013, The Journal of Neuroscience.

[21]  A. Verkhratsky,et al.  Amyloid-β and Alzheimer's disease type pathology differentially affects the calcium signalling toolkit in astrocytes from different brain regions , 2013, Cell Death and Disease.

[22]  Martin D. Haustein,et al.  Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses , 2013, The Journal of general physiology.

[23]  J. Diamond,et al.  Amyloid-β1–42 Slows Clearance of Synaptically Released Glutamate by Mislocalizing Astrocytic GLT-1 , 2013, The Journal of Neuroscience.

[24]  Andrew W. Kraft,et al.  Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  K. Noguchi,et al.  An ultrastructural evidence for the expression of transient receptor potential ankyrin 1 (TRPA1) in astrocytes in the rat trigeminal caudal nucleus , 2012, Journal of Chemical Neuroanatomy.

[26]  B. Nilius,et al.  The transient receptor potential channel TRPA1: from gene to pathophysiology , 2012, Pflügers Archiv - European Journal of Physiology.

[27]  M. Savasta,et al.  Subthalamic Nucleus Electrical Stimulation Modulates Calcium Activity of Nigral Astrocytes , 2012, PloS one.

[28]  L. Mucke,et al.  Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. , 2012, Cold Spring Harbor perspectives in medicine.

[29]  Boudewijn van der Sanden,et al.  Specific In Vivo Staining of Astrocytes in the Whole Brain after Intravenous Injection of Sulforhodamine Dyes , 2012, PloS one.

[30]  I. Mook‐Jung,et al.  Astrocyte-Originated ATP Protects Aβ1-42-Induced Impairment of Synaptic Plasticity , 2012, The Journal of Neuroscience.

[31]  P. Dutar,et al.  Selective impairment of some forms of synaptic plasticity by oligomeric amyloid-β peptide in the mouse hippocampus: implication of extrasynaptic NMDA receptors. , 2012, Journal of Alzheimer's disease : JAD.

[32]  Khaleel Bhaukaurally,et al.  Local Ca2+ detection and modulation of synaptic release by astrocytes , 2011, Nature Neuroscience.

[33]  Baljit S Khakh,et al.  Bulk Loading of Calcium Indicator Dyes to Study Astrocyte Physiology: Key Limitations and Improvements Using Morphological Maps , 2011, The Journal of Neuroscience.

[34]  C. Naus,et al.  Amyloid β-Induced Death in Neurons Involves Glial and Neuronal Hemichannels , 2011, The Journal of Neuroscience.

[35]  Francisco Clascá,et al.  Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice , 2010, Brain Research.

[36]  B. Hyman,et al.  Synchronous Hyperactivity and Intercellular Calcium Waves in Astrocytes in Alzheimer Mice , 2009, Science.

[37]  V. Parpura,et al.  Mechanisms of glutamate release from astrocytes , 2008, Neurochemistry International.

[38]  Michael Zhao,et al.  TRPA1 mediates formalin-induced pain , 2007, Proceedings of the National Academy of Sciences.

[39]  J. Platel,et al.  Synchrony of spontaneous calcium activity in mouse neocortex before synaptogenesis , 2007, The European journal of neuroscience.

[40]  D. Selkoe,et al.  Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide , 2007, Nature Reviews Molecular Cell Biology.

[41]  Hartwig Wolburg,et al.  Aβ42‐driven cerebral amyloidosis in transgenic mice reveals early and robust pathology , 2006, EMBO reports.

[42]  S. Oliet,et al.  Glia-Derived d-Serine Controls NMDA Receptor Activity and Synaptic Memory , 2006, Cell.

[43]  R. Veerhuis,et al.  Inhibitory effect of minocycline on amyloid β fibril formation and human microglial activation , 2006, Glia.

[44]  G. Krafft,et al.  In Vitro Characterization of Conditions for Amyloid-β Peptide Oligomerization and Fibrillogenesis* , 2003, The Journal of Biological Chemistry.

[45]  T. Wyss-Coray,et al.  Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. , 2003, Nature medicine.

[46]  Mark Ellisman,et al.  Protoplasmic Astrocytes in CA1 Stratum Radiatum Occupy Separate Anatomical Domains , 2002, The Journal of Neuroscience.

[47]  S. Oloff,et al.  Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. , 2002, Journal of neurophysiology.

[48]  R. Schliebs,et al.  β-Amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology , 2001, Brain Research.

[49]  P. Haydon Glia: listening and talking to the synapse , 2001, Nature Reviews Neuroscience.

[50]  C. Steinhäuser,et al.  Ion channels in glial cells , 2000, Brain Research Reviews.

[51]  A. Araque,et al.  Tripartite synapses: glia, the unacknowledged partner , 1999, Trends in Neurosciences.

[52]  M. Reivich,et al.  ACTIVATION , 1980, The Social Value of Zoos.