A Massively Parallel Sequencing Approach Uncovers Ancient Origins and High Genetic Variability of Endangered Przewalski's Horses

The endangered Przewalski's horse is the closest relative of the domestic horse and is the only true wild horse species surviving today. The question of whether Przewalski's horse is the direct progenitor of domestic horse has been hotly debated. Studies of DNA diversity within Przewalski's horses have been sparse but are urgently needed to ensure their successful reintroduction to the wild. In an attempt to resolve the controversy surrounding the phylogenetic position and genetic diversity of Przewalski's horses, we used massively parallel sequencing technology to decipher the complete mitochondrial and partial nuclear genomes for all four surviving maternal lineages of Przewalski's horses. Unlike single-nucleotide polymorphism (SNP) typing usually affected by ascertainment bias, the present method is expected to be largely unbiased. Three mitochondrial haplotypes were discovered—two similar ones, haplotypes I/II, and one substantially divergent from the other two, haplotype III. Haplotypes I/II versus III did not cluster together on a phylogenetic tree, rejecting the monophyly of Przewalski's horse maternal lineages, and were estimated to split 0.117–0.186 Ma, significantly preceding horse domestication. In the phylogeny based on autosomal sequences, Przewalski's horses formed a monophyletic clade, separate from the Thoroughbred domestic horse lineage. Our results suggest that Przewalski's horses have ancient origins and are not the direct progenitors of domestic horses. The analysis of the vast amount of sequence data presented here suggests that Przewalski's and domestic horse lineages diverged at least 0.117 Ma but since then have retained ancestral genetic polymorphism and/or experienced gene flow.

[1]  E. Verspoor,et al.  Detection and mapping of mtDNA SNPs in Atlantic salmon using high throughput DNA sequencing , 2011, BMC Genomics.

[2]  J. N. MacLeod,et al.  Genome Sequence, Comparative Analysis, and Population Genetics of the Domestic Horse , 2009, Science.

[3]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[4]  Robin Bendrey,et al.  The Earliest Horse Harnessing and Milking , 2009, Science.

[5]  Fengtang Yang,et al.  Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla , 2008, Chromosome Research.

[6]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[7]  Stephan C. Schuster,et al.  Whole-Genome Shotgun Sequencing of Mitochondria from Ancient Hair Shafts , 2007, Science.

[8]  Jian Wang,et al.  High altitude adaptation and phylogenetic analysis of Tibetan horse based on the mitochondrial genome. , 2007, Journal of genetics and genomics = Yi chuan xue bao.

[9]  G. Stranzinger,et al.  Comparative chromosomal studies of E. caballus (ECA) and E. przewalskii (EPR) in a female F1 hybrid. , 2005, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[10]  Sergei L. Kosakovsky Pond,et al.  HyPhy: hypothesis testing using phylogenies , 2005, Bioinform..

[11]  Simon D W Frost,et al.  A simple hierarchical approach to modeling distributions of substitution rates. , 2005, Molecular biology and evolution.

[12]  P. Taberlet,et al.  African Origins of the Domestic Donkey , 2004, Science.

[13]  H. Ellegren,et al.  Limited number of patrilines in horse domestication , 2004, Nature Genetics.

[14]  R. Nielsen Population genetic analysis of ascertained SNP data , 2004, Human Genomics.

[15]  Fengtang Yang,et al.  Karyotypic relationships of horses and zebras: results of cross-species chromosome painting , 2004, Cytogenetic and Genome Research.

[16]  O. Ryder,et al.  FISH analysis comparing genome organization in the domestic horse (Equus caballus) to that of the Mongolian wild horse (E. przewalskii) , 2004, Cytogenetic and Genome Research.

[17]  L. Chemnick,et al.  Genetic variation in Przewalski’s horses, with special focus on the last wild caught mare, 231 Orlitza III , 2004, Cytogenetic and Genome Research.

[18]  G. Brem,et al.  Fixed nucleotide differences on the Y chromosome indicate clear divergence between Equus przewalskii and Equus caballus. , 2003, Animal genetics.

[19]  P. Taberlet,et al.  The power and promise of population genomics: from genotyping to genome typing , 2003, Nature Reviews Genetics.

[20]  K. Røed,et al.  REFUGIAL ORIGINS OF REINDEER (RANGIFER TARANDUS L.) INFERRED FROM MITOCHONDRIAL DNA SEQUENCES , 2003, Evolution; international journal of organic evolution.

[21]  M. Hurles,et al.  Mitochondrial DNA and the origins of the domestic horse , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Kateryna D. Makova,et al.  Strong male-driven evolution of DNA sequences in humans and apes , 2002, Nature.

[23]  R. Bowyer,et al.  Mitochondrial phylogeography of moose (Alces alces): late pleistocene divergence and population expansion. , 2002, Molecular phylogenetics and evolution.

[24]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[25]  R. Fleischer,et al.  PHYLOGEOGRAPHY OF THE ASIAN ELEPHANT (ELEPHAS MAXIMUS) BASED ON MITOCHONDRIAL DNA , 2001, Evolution; international journal of organic evolution.

[26]  R. Wayne,et al.  Widespread origins of domestic horse lineages. , 2001, Science.

[27]  Han N. Lim,et al.  A survey of equid mitochondrial DNA: Implications for the evolution, genetic diversity and conservation of Equus , 2000, Conservation Genetics.

[28]  Anatoly Ruvinsky,et al.  The Genetics of the Horse , 2000 .

[29]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[30]  P. Hedrick,et al.  Major histocompatibility complex variation in the endangered Przewalski's horse. , 1999, Genetics.

[31]  H. Endo,et al.  Morphological character of the shoulder and leg skeleton in Przewalski's horse (Equus przewalskii). , 1999, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[32]  H. Lewin,et al.  Phylogenetic relationships of Cheju horses to other horse breeds as determined by mtDNA D-loop sequence polymorphism. , 1999, Animal genetics.

[33]  O. Ryder,et al.  Mitochondrial control region and 12S rRNA variation in Przewalski's horse (Equus przewalskii). , 1998, Animal genetics.

[34]  K. Houpt,et al.  The Return of the Takh. (Book Reviews: Przewalski's Horse. The History and Biology of an Endangered Species.) , 1997 .

[35]  E. Dunnington Przewalski's horse — The history and biology of an endangered species , 1995 .

[36]  N. Saitou,et al.  Mitochondrial DNA sequences of various species of the genus Equus with special reference to the phylogenetic relationship between Przewalskii's wild horse and domestic horse , 1995, Journal of Molecular Evolution.

[37]  Ú. Árnason,et al.  The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. , 1994, Gene.

[38]  M. Nei,et al.  Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.

[39]  O. Ryder Przewalski’s Horse: Prospects for Reintroduction into the Wild , 1993 .

[40]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[41]  O. Ryder,et al.  Genetic studies of blood markers in Przewalski's horses. , 1987, The Journal of heredity.

[42]  S. M. Chambers,et al.  Genetics and Conservation. , 1985 .

[43]  O. Ryder,et al.  A cooperative breeding programme for the Mongolian wild horse Equus przewalskii in the United States , 1982 .

[44]  K. Benirschke,et al.  Chromosome Complement: Differences between Equus caballus and Equus przewalskii, Poliakoff , 1965, Science.

[45]  K. Makova,et al.  Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences. , 2009, Molecular biology and evolution.

[46]  S. O’Brien,et al.  Cytonuclear genomic dissociation in African elephant species , 2005, Nature Genetics.

[47]  M. Feldman,et al.  Rates of DNA Duplication and Mitochondrial DNA Insertion in the Human Genome , 2004, Journal of Molecular Evolution.

[48]  A. Ruvinsky,et al.  Genetic aspects of domestication, breeds and their origins. , 2000 .

[49]  A. Forstén,et al.  Mitochondrial-DNA time-table and the evolution of Equus : comparison of molecular and paleontological evidence , 1991 .

[50]  R. Short,et al.  Meiosis in interspecific equine hybrids. II. The przewalski horse/domestic horse hybrid. , 1974, Cytogenetics and cell genetics.

[51]  R. Short,et al.  Meiosis in interspecific equine hybrids , 1974 .

[52]  P. Ehrlich,et al.  Population Biology. , 1962, Science.