Life Cycle Assessment (LCA) of building materials for the evaluation of building sustainability: the case of thermal insulation materials

DOI: 10.7764/RDLC.16.1.22 At present, architects and engineers design in such a way that their projects comply with the local regulations of the place where they are working. However these local rules are not enough to achieve the sustainability objectives set by the European Union for 2020. The selection of one building material or another will establish, in part, the building's global environmental impact. For this reason it is increasingly necessary to characterize, on an environmental level, building materials, in order to be able to prescribe the most suitable material to incorporate to architectural projects. Taking into account that thermal insulation materials are one of the key elements in construction, since they help the building's energy saving, the environmental impact of extruded polystyrene, glass wool and cork are assessed in this article in a comparative manner, by the Life Cycle Analysis (LCA) methodology. In conclusion, according to the results obtained, there is not one best product, environmentally speaking, for all the impact categories analyzed. The choice of a material or another must be done adopting a solution of global commitment, cork being the best material out of the ones selected.

[1]  Iris Sanchez Soloaga,et al.  The use of recycled plastic in concrete. An alternative to reduce the ecological footprint , 2014 .

[2]  L. Codispoti The limits to growth , 1997, Nature.

[3]  Frank Werner,et al.  Allocation in lca of wood-based products experiences of cost action E9 part i. methodology , 2002 .

[4]  D. Ruiz,et al.  Comparative Life Cycle Assessment of the Conventional Façade SOS Natura and the Natural Water Tank Façade , 2016 .

[5]  Hans-Jörg Althaus,et al.  Relevance of simplifications in LCA of building components , 2009 .

[6]  Matthias Abend,et al.  A Technical Framework For Life Cycle Assessment , 2016 .

[7]  Michael Spielmann,et al.  Life Cycle Inventories of Transport Services: Background Data for Freight Transport (10 pp) , 2005 .

[8]  R. Frischknecht,et al.  Implementation of Life Cycle Impact Assessment Methods. ecoinvent report No. 3, v2.2 , 2010 .

[9]  César Bedoya Frutos,et al.  Repercusión del impacto ambiental en las distintas fases productivas de los procesos edificatorios según su grado de industrialización , 2013 .

[10]  Frank Werner,et al.  Allocation in LCA of wood-based products experiences of cost action E9 , 2002 .

[11]  Agis M. Papadopoulos,et al.  An assessment tool for the energy, economic and environmental evaluation of thermal insulation solutions , 2009 .

[12]  Mary Ann Curran,et al.  The status of life‐cycle assessment as an environmental management tool , 2004 .

[13]  Jeroen B. Guinee,et al.  Handbook on life cycle assessment operational guide to the ISO standards , 2002 .

[14]  Miren Artaraz Miñón,et al.  Teoría de las tres dimensiones de desarrollo sostenible , 2002 .

[15]  J. Avellaneda,et al.  La sostenibilidad en la arquitectura industrializada: cerrando el ciclo de los materiales , 2010 .

[16]  Gregory A. Keoleian,et al.  Life cycle energy and environmental performance of a new university building: modeling challenges and design implications , 2003 .

[17]  Günter Fleischer,et al.  Functional unit for systems using natural raw materials , 1996 .

[18]  C. H. Waddington,et al.  “Blueprint for Survival” , 1972, Nature.

[19]  Göran Finnveden,et al.  Allocation in ISO 14041—a critical review , 2001 .

[20]  Gabriela Benveniste,et al.  Análisis de ciclo de vida y reglas de categoría de producto en la construcción. El caso de las baldosas cerámicas , 2011 .