ARGOS at the LBT

Having completed its commissioning phase, the Advanced Rayleigh guided Ground-layer adaptive Optics System (ARGOS) facility is coming online for scientific observations at the Large Binocular Telescope (LBT). With six Rayleigh laser guide stars in two constellations and the corresponding wavefront sensing, ARGOS corrects the ground-layer distortions for both LBT 8.4 m eyes with their adaptive secondary mirrors. Under regular observing conditions, this set-up delivers a point spread function (PSF) size reduction by a factor of 2–3 compared to a seeing-limited operation. With the two LUCI infrared imaging and multi-object spectroscopy instruments receiving the corrected images, observations in the near-infrared can be performed at high spatial and spectral resolution. We discuss the final ARGOS technical set-up and the adaptive optics performance. We show that imaging cases with ground-layer adaptive optics (GLAO) are enhancing several scientific programmes, from cluster colour magnitude diagrams and Milky Way embedded star formation, to nuclei of nearby galaxies or extragalactic lensing fields. In the unique combination of ARGOS with the multi-object near-infrared spectroscopy available in LUCI over a 4 × 4 arcmin field of view, the first scientific observations have been performed on local and high-z objects. Those high spatial and spectral resolution observations demonstrate the capabilities now at hand with ARGOS at the LBT.

[1]  Ronald Cubalchini,et al.  Modal wave-front estimation from phase derivative measurements , 1979 .

[2]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[3]  W. O. Saxton,et al.  Measurement of the Transverse Electric Field Profile of Light by a Self-referencing Method with Direct Phase Determination References and Links " Measurement of Atmospheric Wavefront Distortion Using Scattered Light from a Laser Guide-star, " , 2022 .

[4]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[5]  S. Cuevas,et al.  Turbulence Profiles with Generalized SCIDAR at San Pedro Mártir Observatory and Isoplanatism Studies , 1998 .

[6]  J. Cepa,et al.  The effects of seeing on Sérsic profiles – II. The Moffat PSF , 2001, astro-ph/0109067.

[7]  J. Rowe,et al.  Variable Stars in Galactic Globular Clusters , 2001, astro-ph/0108024.

[8]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[9]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[10]  Mark Chun,et al.  Optical Turbulence Profiles at Mauna Kea Measured by MASS and SCIDAR , 2005 .

[11]  B. Elmegreen,et al.  Stellar Populations in 10 Clump-Cluster Galaxies of the Hubble Ultra Deep Field , 2005, astro-ph/0504032.

[12]  M. Kasper,et al.  Adaptive optics for Extremely Large Telescopes , 2005, Proceedings of the International Astronomical Union.

[13]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[14]  N. M. Milton,et al.  Performance Modeling of a Wide‐Field Ground‐Layer Adaptive Optics System , 2006, astro-ph/0610097.

[15]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Performance Characterization , 2006 .

[16]  The 8 O'Clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data , 2006, astro-ph/0611138.

[17]  B. García-Lorenzo,et al.  Statistical turbulence vertical profiles at the Roque de los Muchachos Observatory and Teide Observatory , 2007, SPIE Remote Sensing.

[18]  Jason Spyromilio Extremely Large Telescopes , 2008 .

[19]  Laboratoire AIM,et al.  Bulge Formation by the Coalescence of Giant Clumps in Primordial Disk Galaxies , 2008, 0903.1937.

[20]  Roberto Tighe,et al.  SAM: a facility GLAO instrument , 2008, Astronomical Telescopes + Instrumentation.

[21]  Heike Soltau,et al.  Results of a pnCCD detector system for high-speed optical imaging , 2008, Astronomical Telescopes + Instrumentation.

[22]  Puragra Guhathakurta,et al.  Metallicity and Alpha-Element Abundance Measurement in Red Giant Stars from Medium-Resolution Spectra , 2008, 0804.3590.

[23]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[24]  D. Coe,et al.  New Multiply-Lensed Galaxies Identified in ACS/NIC3 Observations of Cl0024+1654, Using an Improved Mass Model , 2009, 0902.3971.

[25]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[26]  B. Elmegreen,et al.  BULGE AND CLUMP EVOLUTION IN HUBBLE ULTRA DEEP FIELD CLUMP CLUSTERS, CHAINS AND SPIRAL GALAXIES , 2008, 0810.5404.

[27]  Marcia J. Rieke,et al.  TURNING BACK THE CLOCK: INFERRING THE HISTORY OF THE EIGHT O'CLOCK ARC , 2009, 0905.1122.

[28]  Christian Schwab,et al.  Calibration strategy and optics for ARGOS at the LBT , 2010, Astronomical Telescopes + Instrumentation.

[29]  J. H. Slagle,et al.  The Large Binocular Telescope , 2010, Other Conferences.

[30]  A. Dekel,et al.  Survival of star-forming giant clumps in high-redshift galaxies , 2010, 1001.0765.

[31]  G. Zamorani,et al.  THE SINS SURVEY OF z ∼ 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS* , 2010 .

[32]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[33]  Amokrane Berdja,et al.  Multi-instrument measurement campaign at Paranal in 2007 - Characterization of the outer scale and the seeing of the surface layer , 2010 .

[34]  Armando Riccardi,et al.  Laboratory characterization and performance of the high-order adaptive optics system for the Large Binocular Telescope , 2010 .

[35]  Judith G. Cohen,et al.  NGC 2419–ANOTHER REMNANT OF ACCRETION BY THE MILKY WAY , 2010, 1010.0031.

[36]  J. Stoesz,et al.  Optical turbulence vertical distribution with standard and high resolution at Mt Graham , 2010, 1001.1304.

[37]  C. Baranec,et al.  A ground-layer adaptive optics system with multiple laser guide stars , 2010, Nature.

[38]  Armando Riccardi,et al.  The adaptive secondary mirror for the Large Binocular Telescope: optical acceptance test and preliminary on-sky commissioning results , 2010, Astronomical Telescopes + Instrumentation.

[39]  L. Busoni,et al.  Large Binocular Telescope Adaptive Optics System: new achievements and perspectives in adaptive optics , 2011, Optical Engineering + Applications.

[40]  Santiago,et al.  New insights into the star formation histories of candidate intermediate-age early-type galaxies from K-band imaging of globular clusters , 2011, 1111.1716.

[41]  R. Genzel,et al.  CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. II. PROPERTIES OF KILOPARSEC-SCALE CLUMPS IN REST-FRAME OPTICAL EMISSION OF z ∼ 2 STAR-FORMING GALAXIES , 2011, 1104.0248.

[42]  L. Christensen,et al.  Nebular and global properties of the gravitationally lensed galaxy , 2011, 1202.1745.

[43]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[44]  A. Dekel,et al.  Rotational support of giant clumps in high-z disc galaxies , 2011, 1106.5587.

[45]  Walter Seifert,et al.  LUCI in the sky: performance and lessons learned in the first two years of near-infrared multi-object spectroscopy at the LBT , 2012, Other Conferences.

[46]  J. Newman,et al.  SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES , 2012, 1203.2611.

[47]  S. Rabien,et al.  Vibration control for the ARGOS laser launch path , 2012, Other Conferences.

[48]  E. Jullo,et al.  THE ORIGIN AND EVOLUTION OF METALLICITY GRADIENTS: PROBING THE MODE OF MASS ASSEMBLY AT z ≃ 2 , 2012, 1207.4489.

[49]  Andreas Burkert,et al.  SHOCKED SUPERWINDS FROM THE z ∼ 2 CLUMPY STAR-FORMING GALAXY, ZC406690 , 2012, 1204.4727.

[50]  C. Blake,et al.  Scaling relations of star-forming regions: from kpc-sized clumps to H ii regions , 2012, 1203.0309.

[51]  N. Arimoto,et al.  TWO DISTINCT RED GIANT BRANCH POPULATIONS IN THE GLOBULAR CLUSTER NGC 2419 AS TRACERS OF A MERGER EVENT IN THE MILKY WAY , 2013, 1310.4499.

[52]  Peter Erwin,et al.  IMFIT: A FAST, FLEXIBLE NEW PROGRAM FOR ASTRONOMICAL IMAGE FITTING , 2014, 1408.1097.

[53]  S. Rabien,et al.  ARGOS wavefront sensing: from detection to correction , 2014, Astronomical Telescopes and Instrumentation.

[54]  Sarah J. Diggs,et al.  Gemini multiconjugate adaptive optics system review – II. Commissioning, operation and overall performance , 2014, 1402.6906.

[55]  F. Gonté,et al.  Laser Guide Star Facility Upgrade , 2014 .

[56]  Charles P. Cavedoni,et al.  Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration , 2013, 1310.6199.

[57]  S. Ravindranath,et al.  CLUMPY GALAXIES IN CANDELS. I. THE DEFINITION OF UV CLUMPS AND THE FRACTION OF CLUMPY GALAXIES AT 0.5 < z < 3 , 2014, 1410.7398.

[58]  J. Brinchmann,et al.  The physical nature of the 8 o'clock arc based on near-IR IFU spectroscopy with SINFONI , 2013, 1306.6282.

[59]  M. Swinbank,et al.  ALMA RESOLVES THE PROPERTIES OF STAR-FORMING REGIONS IN A DENSE GAS DISK AT z ∼ 3 , 2015, 1505.05148.

[60]  A. M. Swinbank,et al.  Resolved spectroscopy of gravitationally lensed galaxies: global dynamics and star-forming clumps on ∼100 pc scales at 1 < z < 4 , 2015, 1503.07873.

[61]  B. Altieri,et al.  Planck's Dusty GEMS: Gravitationally lensed high-redshift galaxies discovered with the Planck survey , 2015, 1506.01962.

[62]  B. Altieri,et al.  Planck’s dusty GEMS: The brightest gravitationally lensed galaxies discovered with the Planck all-sky survey , 2015 .

[63]  T. Marquart,et al.  Kinematics of Haro 11: The miniature Antennae , 2015, 1508.00541.

[64]  R. B. Barreiro,et al.  Planck intermediate results XXVII. High-redshift infrared galaxy overdensity candidates and lensed sources discovered by Planck and confirmed by Herschel-SPIRE , 2015, 1503.08773.

[65]  Lorenzo Busoni,et al.  Atmospheric turbulence profiling using the SLODAR technique with ARGOS at LBT , 2016, Astronomical Telescopes + Instrumentation.

[66]  D. H. Hughes,et al.  Early Science with the Large Millimeter Telescope: Observations of Extremely Luminous High-z Sources Identified by Planck , 2016, 1603.05622.

[67]  Robert L. Seaman,et al.  Observatory Operations: Strategies, Processes, and Systems VII , 2016 .

[68]  A. Helmi,et al.  The power of teaming up HST and Gaia: the first proper motion measurement of the distant cluster NGC 2419 , 2016, 1612.00183.

[69]  S. Rabien,et al.  First on-sky results with ARGOS at LBT , 2016, Astronomical Telescopes + Instrumentation.

[70]  F. Mannucci,et al.  Molecular outflow and feedback in the obscured quasar XID2028 revealed by ALMA , 2017, 1712.04505.

[71]  David R. Silva,et al.  Observatory Operations: Strategies, Processes, and Systems II , 2017 .

[72]  Yicheng Guo,et al.  Giant clumps in simulated high-z Galaxies: properties, evolution and dependence on feedback , 2015, 1512.08791.

[73]  R. Davies,et al.  Flame : A flexible data reduction pipeline for near-infrared and optical spectroscopy , 2017, 1710.05924.

[74]  J. Diego,et al.  Dark Matter under the Microscope: Constraining Compact Dark Matter with Caustic Crossing Events , 2017, 1706.10281.

[75]  F. Mannucci,et al.  LBT/ARGOS adaptive optics observations of z ∼ 2 lensed galaxies , 2018, Astronomy & Astrophysics.

[76]  F. Timmes,et al.  On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits , 2018, 1903.06527.