Comparison of ceramic, thick-film and thin-film chemical sensors based upon SnO2

Abstract SnO2 is one of the most important inorganic chemical sensor materials. By far the most successful SnO2 devices for practical applications are based upon empirically optimized ceramic and thick-film structures. Nevertheless, our atomistic understanding of sensing mechanisms is still poor, although it is a prerequisite for the ongoing systematic development of thin-film structures using modern thin-film technology. Based upon recent experimental results, current trends are summarized in the development of ceramic, thick-film and thin-film SnO2 sensors.

[1]  Takashi Oyabu,et al.  Sensing characteristics of SnO2 thin film gas sensor , 1982 .

[2]  W. Ko,et al.  Micro-gas sensor for monitoring anesthetic agents , 1990 .

[3]  W. Mokwa,et al.  An SnO2 thin film for sensing arsine , 1985 .

[4]  Maria Prudenziati,et al.  Thick-film technology☆ , 1990 .

[5]  N. Bui,et al.  Interpretation of the electrical properties of a SnO2 gas sensor after treatment with sulfur dioxide , 1984 .

[6]  U. Weimar,et al.  Pattern recognition methods for gas mixture analysis: Application to sensor arrays based upon SnO2 , 1990 .

[7]  M. Nitta,et al.  Oscillation phenomenon in thick-film CO sensor , 1979, IEEE Transactions on Electron Devices.

[8]  Wolfgang Göpel,et al.  Solid-state chemical sensors: Atomistic models and research trends , 1989 .

[9]  W. Göpel,et al.  Surface spectroscopic studies on Pd-doped SnO2 , 1990 .

[10]  Udo Weimar,et al.  Multicomponent gas analysis: An analytical chemistry approach applied to modified SnO2 sensors , 1990 .

[11]  W. Göpel,et al.  Defect structure and sensing mechanism of SnO2 gas sensors: Comparative electrical and spectroscopic studies , 1988 .

[12]  M. Haradome,et al.  Co gas detection by ThO2-Doped SnO2 , 1979 .

[13]  Y. Shimizu,et al.  Gas-sensing characteristics of tin oxide whiskers with different morphologies☆ , 1988 .

[14]  G.S.V. Coles,et al.  Fabrication and preliminary tests on tin(IV) oxide-based gas sensors , 1985 .

[15]  Y. Komem,et al.  Improved performance of SnO2 thin-film gas sensors due to gold diffusion , 1981 .

[16]  Joseph R. Stetter,et al.  Sensor array and catalytic filament for chemical analysis of vapors and mixtures , 1990 .

[17]  Udo Weimar,et al.  Conductance, work function and catalytic activity of SnO2-based gas sensors , 1991 .

[18]  L. N. Yannopoulos Antimony-doped stannic oxide-based thick-film gas sensors , 1987 .

[19]  Bruno Morten,et al.  Thick-film sensors: an overview , 1986 .

[20]  J. Ross Macdonald,et al.  Simplified impedance/frequency‐response results for intrinsically conducting solids and liquids , 1974 .

[21]  D. Kohl Surface processes in the detection of reducing gases with SnO2-based devices , 1989 .

[22]  W. Göpel,et al.  Defect chemistry of tin(iv)-oxide in bulk and boundary layers , 1989 .

[23]  D. Kohl,et al.  Problems and possibilities of oxidic and organic semiconductor gas sensors , 1985 .

[24]  Konrad Colbow,et al.  Selective thermally cycled gas sensing using fast Fourier-transform techniques , 1990 .

[25]  Joachim Maier,et al.  Investigations of the bulk defect chemistry of polycrystalline tin(IV) oxide , 1988 .

[26]  Noboru Yamazoe,et al.  Effects of additives on semiconductor gas sensors , 1983 .