High performance stretchable UV sensor arrays of SnO2 nanowires

A high performance, stretchable UV sensor array was fabricated based on an active matrix (AM) device that combined field effect transistors of SWCNTs and SnO2 nanowires. The AM devices provided spatial UV sensing via the individual sensors in the array. SnO2 NW UV sensors showed an average photosensitivity of ∼10(5) and a photoconductive gain of ∼10(6) under very low UV (λ = 254 nm) power intensities of 0.02-0.04 mW cm(-2). The UV sensing performance was not deteriorated by a prestrain of up to 23% induced by radial deformation, consistent with the mechanical analysis.

[1]  Chongwu Zhou,et al.  Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. , 2011, Nano letters.

[2]  Heung Cho Ko,et al.  Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras. , 2010, Small.

[3]  John A. Rogers,et al.  Stretchable Electronics: Materials Strategies and Devices , 2009 .

[4]  Andrew G. Gillies,et al.  Carbon nanotube active-matrix backplanes for conformal electronics and sensors. , 2011, Nano letters.

[5]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[6]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[7]  J. Wu,et al.  Ultraviolet photodetectors made from SnO2 nanowires , 2009 .

[8]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[9]  Nicholas V. Annetta,et al.  A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology , 2010, Science Translational Medicine.

[10]  Gyu-Tae Kim,et al.  Facile Fabrication of SWCNT/SnO2 Nanowire Heterojunction Devices on Flexible Polyimide Substrate , 2011 .

[11]  J. Ha,et al.  p–n hetero-junction diode arrays of p-type single walled carbon nanotubes and aligned n-type SnO2 nanowires , 2012, Nanotechnology.

[12]  A. Javey,et al.  Toward the Development of Printable Nanowire Electronics and Sensors , 2009 .

[13]  Jangyeol Yoon,et al.  Array of Single‐Walled Carbon Nanotube Intrajunction Devices Fabricated via Type Conversion by Partial Coating with β‐Nicotinamide Adenine Dinucleotide , 2011 .

[14]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[15]  Meiyong Liao,et al.  Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. , 2011, Small.

[16]  John A Rogers,et al.  SnO2 nanowire logic devices on deformable nonplanar substrates. , 2011, ACS nano.

[17]  Y. Chen,et al.  Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration. , 2008, Optics express.

[18]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[19]  Y. Taniyasu,et al.  An aluminium nitride light-emitting diode with a wavelength of 210 nanometres , 2006, Nature.

[20]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[21]  L. Dai,et al.  Self‐Powered, Ultrafast, Visible‐Blind UV Detection and Optical Logical Operation based on ZnO/GaN Nanoscale p‐n Junctions , 2011, Advanced materials.

[22]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.

[23]  Zhiyong Fan,et al.  Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. , 2008, Nano letters.

[24]  Muhammad Safdar,et al.  High-performance UV-visible-NIR broad spectral photodetectors based on one-dimensional In₂Te₃ nanostructures. , 2012, Nano letters.

[25]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[26]  Nuanyang Cui,et al.  High‐Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates , 2011 .

[27]  Wei Lu,et al.  Doping-dependent electrical characteristics of SnO2 nanowires. , 2008, Small.

[28]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[29]  Chunling Zhu,et al.  Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes , 2007 .

[30]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[31]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[32]  C. Soci,et al.  ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.

[33]  A. Javey,et al.  Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing , 2007 .

[34]  Tianyou Zhai,et al.  Ultrahigh‐Performance Solar‐Blind Photodetectors Based on Individual Single‐crystalline In2Ge2O7 Nanobelts , 2010, Advanced materials.

[35]  S C Burgess,et al.  Multi-modal locomotion: from animal to application , 2013, Bioinspiration & biomimetics.

[36]  John A. Rogers,et al.  Mechanics of noncoplanar mesh design for stretchable electronic circuits , 2009 .

[37]  David A. Tanner,et al.  A Single Polymer Nanowire Photodetector , 2006 .

[38]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[39]  J. Rogers,et al.  Stretchable field-effect-transistor array of suspended SnO₂ nanowires. , 2011, Small.

[40]  Kuei-Hsien Chen,et al.  High photocurrent gain in SnO2 nanowires , 2008 .

[41]  J. Rogers,et al.  Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates , 2008, Nature.

[42]  Daeil Kim,et al.  Photoconductance of aligned SnO2 nanowire field effect transistors , 2009 .