Optimization of the chemical vapor deposition process for carbon nanotubes fabrication

A coupled boundary-layer laminar-flow hydrodynamic, heat-transfer, gas-phase chemistry and surface chemistry model is developed to analyze, at the reactor length scale, chemical vapor deposition (CVD) of carbon nanotubes from a gas mixture consisting of methane (carbon precursor) and hydrogen (carrier gas) in the presence of cobalt catalytic particles in a cylindrical reactor. The model allows determination of the gas-phase fields for temperature, velocity, and species concentration as well as the surface-species coverages, the carbon nanotubes growth rate and the deposition rate of amorphous carbon. Experimentally determined carbon deposition rates and carbon nanotubes growth rates at different processing conditions are used to validate the model. The model is also coupled with the genetic algorithm to determine the process parameters (the gas temperature and velocity at the reactor inlet, the reactor-wall temperature, the pressure, and the mole fraction of methane in the gas mixture) which maximize the carbon nanotubes yield while minimizing the amount of deposited amorphous carbon.

[1]  J. M. Kim,et al.  Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition , 1999 .

[2]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[3]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[4]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[5]  D. Dandy,et al.  Analysis of diamond growth in subatmospheric dc plasma‐gun reactors , 1993 .

[6]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[7]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[8]  M. Grujicic,et al.  Reactor length-scale modeling of chemical vapor deposition of carbon nanotubes , 2003 .

[9]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[10]  J. P. Zhang,et al.  Controlled production of aligned-nanotube bundles , 1997, Nature.

[11]  Mica Grujicic,et al.  Multi-length scale modeling of CVD of diamond Part II A combined atomic-scale/grain-scale analysis , 2000 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  R. Car,et al.  Microscopic Growth Mechanisms for Carbon Nanotubes , 1997, Science.

[14]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[15]  Martin Moskovits,et al.  Highly-ordered carbon nanotube arrays for electronics applications , 1999 .

[16]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[17]  Robert J. Kee,et al.  A Mathematical Model of Silicon Chemical Vapor Deposition Further Refinements and the Effects of Thermal Diffusion , 1986 .

[18]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[19]  M. Grujicic,et al.  Grain-Scale Modeling of CVD of Polycrystalline Diamond Films , 2000 .

[20]  A. Rousset,et al.  Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions , 1999 .

[21]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[22]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[23]  Robert J. Kee,et al.  A Mathematical Model of the Coupled Fluid Mechanics and Chemical Kinetics in a Chemical Vapor Deposition Reactor , 1984 .

[24]  A. Maiti,et al.  Theory of carbon nanotube growth. , 1995, Physical review. B, Condensed matter.

[25]  Robert P. H. Chang,et al.  A nanotube-based field-emission flat panel display , 1998 .

[26]  Mica Grujicic,et al.  Multi-length scale modeling of CVD of diamond Part I A combined reactor-scale/atomic-scale analysis , 2000 .

[27]  Young Hee Lee,et al.  Catalytic Growth of Single-Wall Carbon Nanotubes: An Ab Initio Study , 1997 .

[28]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[29]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.