An investigation into the temperature sensitivity of strained and unstrained multiple quantum-well, long wavelength lasers: new insight and methods of characterization
暂无分享,去创建一个
John G. Simmons | N. Puetz | J. Simmons | N. Puetz | T. Makino | T. Makino | J. D. Evans | J. Evans | David A. Thompson | G. Chik | D. A. Thompson | G. Chik
[1] Y. Yoshikuni,et al. Unifying explanation for recent temperature sensitivity measurements of Auger recombination effects in strained InGaAs/InGaAsP quantum‐well lasers , 1993 .
[2] U. Koren,et al. Field and hot carrier enhanced leakage in InGaAsP/InP heterojunctions , 1983 .
[3] J. Pankove,et al. Temperature dependence of emission efficiency and lasing threshold in laser diodes , 1968 .
[4] A. Haug,et al. Temperature dependence of threshold current of In1-x GaxAsyP1-y lasers with different compositions , 1987 .
[5] A. Haug. Theory of the temperature dependence of the threshold current of an InGaAsP laser , 1985 .
[6] M. Asada,et al. The temperature dependence of the threshold current of GaInAsP/InP DH lasers , 1981, IEEE Journal of Quantum Electronics.
[7] R. D. Yadvish,et al. High temperature characteristics of InGaAsP/InP laser structures , 1993 .
[8] C. Henry,et al. The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers , 1983 .
[9] W. Powazinik,et al. Temperature dependence of threshold current in III‐V semiconductor lasers: Experimental prediction and explanation , 1984 .
[10] D. L. Coblentz,et al. Temperature dependence of long wavelength semiconductor lasers , 1992 .
[11] Daniel T. Cassidy,et al. Technique for measurement of the gain spectra of semiconductor diode lasers , 1984 .
[12] Rajaram Bhat,et al. High-performance uncooled 1.3-/spl mu/m Al/sub x/Ga/sub y/In/sub 1-x-y/As/InP strained-layer quantum-well lasers for subscriber loop applications , 1994 .
[13] Temperature dependence of threshold current in (GaIn)(AsP) DH lasers at 1.3 and 1.5 μm wavelength , 1981 .
[14] M. Mohrle,et al. Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers , 1991 .
[15] O. Martínez,et al. Temperature dependence of the threshold current of an InGaAsP laser under 130-ps electrical pulse pumping , 1984 .
[16] J. Simmons,et al. The dependence of the maximum operating temperature of long wavelength semiconductor lasers on physical and material device parameters , 1995, IEEE Photonics Technology Letters.
[17] J. Schlafer,et al. Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 mu m compressively strained semiconductor lasers , 1993 .
[18] T. Tanbun-ek,et al. Reduced temperature dependence of threshold current by broadband enhanced feedback: A new approach and demonstration , 1992 .
[19] O. Wada,et al. Direct observation of electron leakage in InGaAsP/InP double heterostructure , 1982 .
[20] Niloy K. Dutta,et al. The case for Auger recombination in In1−xGaxAsyP1−y , 1982 .
[21] H. Casey. Temperature dependence of the threshold current density in InP‐Ga0.28In0.72As0.6P0.4 (λ=1.3 μm) double heterostructure lasers , 1984 .
[22] H. Imai,et al. Analysis of threshold temperature characteristics for InGaAsP/InP double heterojunction lasers , 1981 .
[23] P. Dapkus,et al. Threshold current analysis of compressive strain (0-1.8%) in low-threshold, long-wavelength quantum well lasers , 1993 .
[24] Masahiro Asada,et al. Gain and intervalence band absorption in quantum-well lasers , 1984 .
[25] M. E. Givens,et al. Temperature-dependent factors contributing to T0 in graded-index separate-confinement-heterostructure single quantum well lasers , 1987 .
[26] L. Figueroa,et al. Analysis of the high temperature characteristics of InGaAs-AlGaAs strained quantum-well lasers , 1992 .
[27] N. Dutta,et al. Temperature dependence of threshold of InGaAsP/InP double‐heterostructure lasers and Auger recombination , 1981 .
[28] Tawee Tanbun-Ek,et al. On the temperature sensitivity of semiconductor lasers , 1992 .
[29] Henry Kressel,et al. The temperature dependence of threshold current for double‐heterojunction lasers , 1979 .
[30] Masahiro Asada,et al. The Temperature Dependence of the Efficiency and Threshold Current of In1-xGaxAsyP1-y Lasers Related to Intervalence Band Absorption , 1980 .
[31] P. Dapkus,et al. Comparative study of low-threshold 1.3 mu m strained and lattice-matched quantum-well lasers , 1993, IEEE Photonics Technology Letters.
[32] M. Pilkuhn,et al. Temperature dependence of optical gain spectra in GaInAsP/InP double‐heterostructure lasers , 1981 .
[33] Niloy K. Dutta,et al. Temperature dependence of threshold of strained quantum well lasers , 1991 .
[34] J. Shah,et al. Influence of hot carriers on the temperature dependence of threshold in 1.3‐μm InGaAsP lasers , 1982 .
[35] Junying Xu,et al. Carrier loss resulting from Auger recombination in InGaAsP/InP double heterojunction laser diodes: Spectroscopy of 950 nm high energy emission , 1985 .
[36] K. D. Chik. A theoretical analysis of Auger recombination induced energetic carrier leakage in GaInAsP/InP double heterojunction lasers and light emitting diodes , 1988 .
[37] Masahiro Asada,et al. The effects of loss and nonradiative recombination on the temperature dependence of threshold current in 1.5-1.6 µm GalnAsP/InP lasers , 1983 .
[38] A. Sugimura,et al. Auger recombination effect on threshold current of InGaAsP quantum well lasers , 1983 .
[39] B. Zheng,et al. Temperature dependence of optical gain, quantum efficiency, and threshold current in GaAs/GaAlAs graded-index separate-confinement heterostructure single-quantum-well lasers , 1989 .
[40] Niloy K. Dutta,et al. Temperature dependence of carrier lifetime and Auger recombination in 1.3 μm InGaAsP , 1985 .
[41] D. Cassidy,et al. Observation of dislocation stresses in InP using polarization‐resolved photoluminescence , 1992 .
[42] Amnon Yariv,et al. Carrier leakage and temperature dependence of InGaAsP lasers , 1983 .