Semilinear Sets and Counter Machines: a Brief Survey
暂无分享,去创建一个
[1] Shinnosuke Seki,et al. Operational State Complexity under Parikh Equivalence ? (Extended Abstract) , 2014 .
[2] Eitan M. Gurari,et al. Two-Way Counter Machines and Diophantine Equations , 1982, JACM.
[3] Oscar H. Ibarra,et al. Characterizations of Bounded semilinear Languages by One-Way and Two-Way Deterministic Machines , 2012, Int. J. Found. Comput. Sci..
[4] Tao Jiang,et al. New Decidability Results Concerning Two-Way Counter Machines , 1995, SIAM J. Comput..
[5] Luca Aceto,et al. A Fully Equational Proof of Parikh's Theorem , 2001, RAIRO Theor. Informatics Appl..
[6] Jeffrey Shallit,et al. Unary Context-Free Grammars and Pushdown Automata, Descriptional Complexity and Auxiliary Space Lower Bounds , 2002, J. Comput. Syst. Sci..
[7] Sheila A. Greibach,et al. An Infinite Hierarchy of Context-Free Languages , 1969, JACM.
[8] Eitan M. Gurari,et al. The Complexity of Decision Problems for Finite-Turn Multicounter Machines , 1981, J. Comput. Syst. Sci..
[9] Oscar H. Ibarra,et al. One-reversal counter machines and multihead automata: Revisited , 2011, Theor. Comput. Sci..
[10] Oscar H. Ibarra,et al. Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.
[11] Joost Engelfriet,et al. Finitary Compositions of Two-way Finite-State Transductions , 2007, Fundam. Informaticae.
[12] Marvin Minsky,et al. Computation : finite and infinite machines , 2016 .
[13] Masami Ito,et al. Formal Languages Consisting of Primitive Words , 1993, FCT.
[14] Thiet-Dung Huynh. The Complexity of Semilinear Sets , 1982, J. Inf. Process. Cybern..
[15] Anthony Widjaja Lin,et al. Model Checking Recursive Programs with Numeric Data Types , 2011, CAV.
[16] Javier Esparza. Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes , 1995, FCT.
[17] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[18] H. Wilf,et al. Uniqueness theorems for periodic functions , 1965 .
[19] Pierre Ganty,et al. Parikhʼs theorem: A simple and direct automaton construction , 2010, Inf. Process. Lett..
[20] Oscar H. Ibarra,et al. On the Parikh Membership Problem for FAs, PDAs, and CMs , 2014, LATA.
[21] Rohit Parikh,et al. On Context-Free Languages , 1966, JACM.
[22] William F. Ogden,et al. A helpful result for proving inherent ambiguity , 1968, Mathematical systems theory.
[23] Shinnosuke Seki,et al. Converting nondeterministic automata and context-free grammars into Parikh equivalent one-way and two-way deterministic automata , 2012, Inf. Comput..
[24] Rich Schroeppel,et al. A Two Counter Machine Cannot Calculate 2N , 1972 .
[25] Anthony Widjaja Lin,et al. Parikh Images of Grammars: Complexity and Applications , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.
[26] Oscar H. Ibarra,et al. A Technique for Proving Decidability of Containment and Equivalence of Linear Constraint Queries , 1999, J. Comput. Syst. Sci..
[27] Tamás Gergely,et al. First-Order Logics , 2010 .
[28] Javier Esparza. Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes , 1997, Fundam. Informaticae.
[29] Andreas Malcher,et al. First-order logics: some characterizations and closure properties , 2012, Acta Informatica.
[30] Oscar H. Ibarra,et al. On the solvability of a class of diophantine equations and applications , 2006, Theor. Comput. Sci..
[31] Jean-Marc Talbot,et al. Properties of Visibly Pushdown Transducers , 2010, MFCS.
[32] Anthony Widjaja To,et al. Parikh Images of Regular Languages: Complexity and Applications , 2010, 1002.1464.
[33] Seymour Ginsburg,et al. Two Families of Languages Related to ALGOL , 1962, JACM.
[34] Oscar H. Ibarra,et al. On two-way nondeterministic finite automata with one reversal-bounded counter , 2005, Theor. Comput. Sci..
[35] Oscar H. Ibarra,et al. On the containment and equivalence problems for two-way transducers , 2012, Theor. Comput. Sci..
[36] Grzegorz Rozenberg,et al. Handbook of formal languages, vol. 1: word, language, grammar , 1997 .
[37] B. S. Baker,et al. Reversal-bounded multipushdown machines. [Turing acceptors for context free languages] , 1974 .
[38] S. Ginsburg,et al. BOUNDED ALGOL-LIKE LANGUAGES^) , 1964 .
[39] Oscar H. Ibarra,et al. On two-way FA with monotonic counters and quadratic Diophantine equations , 2004, Theor. Comput. Sci..
[40] Stanislav Böhm,et al. Equivalence of deterministic one-counter automata is NL-complete , 2013, STOC '13.
[41] Brenda S. Baker,et al. Reversal-Bounded Multipushdown Machines , 1974, J. Comput. Syst. Sci..
[42] Oscar H. Ibarra,et al. On Counter Machines, Reachability Problems, and Diophantine Equations , 2008, Int. J. Found. Comput. Sci..