The GAM1/SNF2 gene of Saccharomyces cerevisiae encodes a highly charged nuclear protein required for transcription of the STA1 gene

[1]  J. R. Fresco,et al.  Nucleotide Sequence , 2020, Definitions.

[2]  Y. Suzuki,et al.  GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae , 1988, Molecular and cellular biology.

[3]  P. Mitchell,et al.  Transactivation by the hepatitis B virus X protein depends on AP-2 and other transcription factors , 1990, Nature.

[4]  Ira Herskowitz,et al.  A regulatory hierarchy for cell specialization in yeast , 1989, Nature.

[5]  R. Tjian,et al.  Synergistic activation by the glutamine-rich domains of human transcription factor Sp1 , 1989, Cell.

[6]  R. Akada,et al.  Genes Required for Transcription of STA1 encoding an Extracellular Glucoamylase in the Yeast Saccharomyces , 1989 .

[7]  Michael R. Green,et al.  Activator's target in sight , 1989, Nature.

[8]  W. Hörz,et al.  The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions , 1989, Molecular and cellular biology.

[9]  M. Inui,et al.  Genetic Controls of STA1 Gene Expression in Yeast , 1989 .

[10]  Michael R. Green,et al.  Transcription activation by the adenovirus E1a protein , 1989, Nature.

[11]  Y. Suzuki,et al.  GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[12]  R. Elble,et al.  Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT alpha cells. , 1988, Journal of molecular biology.

[13]  S. McKnight,et al.  Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. , 1988, Genes & development.

[14]  Steven Hahn,et al.  Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an interdependent manner , 1987, Cell.

[15]  Robert Tjian,et al.  Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain , 1987, Cell.

[16]  M. Carlson,et al.  Molecular analysis of SSN6, a gene functionally related to the SNF1 protein kinase of Saccharomyces cerevisiae , 1987, Molecular and cellular biology.

[17]  I. Yamashita,et al.  Gene fusion is a possible mechanism underlying the evolution of STA1 , 1987, Journal of bacteriology.

[18]  L. Guarente,et al.  Yeast HAP1 activator competes with the factor RC2 for binding to the upstream activation site UAS1 of the CYC1 gene , 1987, Cell.

[19]  L. Guarente,et al.  Sequence and nuclear localization of the Saccharomyces cerevisiae HAP2 protein, a transcriptional activator , 1987, Molecular and cellular biology.

[20]  A. Laughon,et al.  Structure of transcripts from the homeotic Antennapedia gene of Drosophila melanogaster: two promoters control the major protein-coding region. , 1986, Molecular and cellular biology.

[21]  M. Carlson,et al.  Molecular analysis of SNF2 and SNF5, genes required for expression of glucose-repressible genes in Saccharomyces cerevisiae , 1986, Molecular and cellular biology.

[22]  S. Rogers,et al.  Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. , 1986, Science.

[23]  K. Yamamoto,et al.  Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA , 1986, Cell.

[24]  I. Yamashita,et al.  Proteolytic processing of glucoamylase in the yeast Saccharomyces diastaticus. , 1986 .

[25]  R. W. Davis,et al.  Structure and sequence of the centromeric DNA of chromosome 4 in Saccharomyces cerevisiae , 1986, Molecular and Cellular Biology.

[26]  I. Yamashita,et al.  Transcriptional control of the sporulation-specific glucoamylase gene in the yeast Saccharomyces cerevisiae , 1985, Molecular and cellular biology.

[27]  I. Yamashita,et al.  Control of STA1 gene expression by the mating-type locus in yeasts , 1985, Journal of bacteriology.

[28]  K. Struhl,et al.  GCN4 protein, synthesize in vitro, binds HIS3 regulatory sequences: Implications for general control of amino acid biosynthetic genes in yeast , 1985, Cell.

[29]  M. Ptashne,et al.  Specific DNA binding of GAL4, a positive regulatory protein of yeast , 1985, Cell.

[30]  I. Yamashita,et al.  Polymorphic extracellular glucoamylase genes and their evolutionary origin in the yeast Saccharomyces diastaticus , 1985, Journal of bacteriology.

[31]  I. Yamashita,et al.  Nucleotide sequence of the extracellular glucoamylase gene STA1 in the yeast Saccharomyces diastaticus , 1985, Journal of bacteriology.

[32]  S. Artavanis-Tsakonas,et al.  opa: A novel family of transcribed repeats shared by the Notch locus and other developmentally regulated loci in D. melanogaster , 1985, Cell.

[33]  L. Kauvar,et al.  The engrailed locus of drosophila: Structural analysis of an embryonic transcript , 1985, Cell.

[34]  W. McGinnis,et al.  Isolation of a homoeo box-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts , 1985, Nature.

[35]  M. Carlson,et al.  Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. , 1984, Genetics.

[36]  E. Elion,et al.  The major promoter element of rRNA transcription in yeast lies 2 kb upstream , 1984, Cell.

[37]  I. Yamashita,et al.  Subunit Structure of Glucoamylase of Saccharomyces diastaticus , 1984 .

[38]  J. Pringle,et al.  Relationship of actin and tubulin distribution to bud growth in wild- type and morphogenetic-mutant Saccharomyces cerevisiae , 1984, The Journal of cell biology.

[39]  I. Yamashita,et al.  Genetic Background of Glucoamylase Production in the Yeast Saccharomyces , 1984 .

[40]  I. Yamashita,et al.  Isolation of Glucoamylase-non-producing Mutants in the Yeast Saccharomyces diastaticus , 1984 .

[41]  I. Yamashita,et al.  Mating signals control expression of both starch fermentation genes and a novel flocculation gene FLO8 in the yeast Saccharomyces , 1983 .

[42]  I. Yamashita,et al.  In vivo ligation of linear DNA molecules to circular forms in the yeast Saccharomyces cerevisiae , 1983, Journal of bacteriology.

[43]  I. Yamashita,et al.  Karyoduction in Saccharomyces cerevisiae , 1983 .

[44]  I. Yamashita,et al.  Molecular Cloning of a Glucoamylase-producing Gene in the Yeast Saccharomyces , 1983 .

[45]  A. Martinez-Arias,et al.  Beta-galactosidase gene fusions for analyzing gene expression in escherichia coli and yeast. , 1983, Methods in enzymology.

[46]  D. Botstein,et al.  Mutants of yeast defective in sucrose utilization. , 1981, Genetics.

[47]  R. W. Davis,et al.  High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[48]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Falkow,et al.  Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. , 1977, Gene.

[50]  E. Southern Detection of specific sequences among DNA fragments separated by gel electrophoresis. , 1975, Journal of molecular biology.