Electro-responsive 1-D nanomaterial driven broad-band reflection in chiral nematic liquid crystals

A controllable and reversible broad-band reflector can be obtained by virtue of the response of one-dimensional (1-D) nanomaterials in chiral nematic liquid crystalline media to an external electric field. The colour switching originated from the electro-responsive 1-D nanomaterials and the responsive mechanism was discussed based on the relationship between the pitch distribution and the alignment of nanomaterials.

[1]  K. Ariga,et al.  Nanorod‐Driven Orientational Control of Liquid Crystal for Polarization‐Tailored Electro‐Optic Devices , 2009 .

[2]  Yunfeng Lu,et al.  Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles. , 2012, Small.

[3]  Fang Liu,et al.  Polymer stabilized liquid crystal films reflecting both right- and left-circularly polarized light , 2008 .

[4]  Hao Qi,et al.  Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles , 2006 .

[5]  Liping Wang,et al.  Studies on the electro‐optical properties of chiral nematic liquid crystal/aerosil particle composites , 2008 .

[6]  Shin-Tson Wu,et al.  Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector. , 2006, Optics express.

[7]  Heiko B. Weber,et al.  Simultaneous Deposition of Metallic Bundles of Single-walled Carbon Nanotubes Using Ac-dielectrophoresis , 2003 .

[8]  S. H. Lee,et al.  Electric-Field-Induced Dispersion of Multiwalled Carbon Nanotubes in Nematic Liquid Crystal , 2011 .

[9]  Torsten Hegmann,et al.  Nanoparticles in liquid crystals and liquid crystalline nanoparticles. , 2012, Topics in current chemistry.

[10]  Lu,et al.  Bragg reflection from cholesteric liquid crystals. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  D. J. Broer,et al.  Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient , 1995, Nature.

[12]  S. Kobayashi,et al.  Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles , 2002 .

[13]  W. Zhou,et al.  Alignment of Liquid Crystals Doped with Nickel Nanoparticles Containing Different Morphologies , 2011, Advanced materials.

[14]  P. Chou,et al.  Color-Tunable Light-Emitting Device Based on the Mixture of CdSe Nanorods and Dots Embedded in Liquid-Crystal Cells , 2010 .

[15]  W. Zhou,et al.  Synthesis of nickel bowl-like nanoparticles and their doping for inducing planar alignment of a nematic liquid crystal. , 2011, Journal of the American Chemical Society.

[16]  K. Sreenivas,et al.  Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals , 2007 .

[17]  H. Cao,et al.  Electrically Controllable Selective Reflection of Chiral Nematic Liquid Crystal/Chiral Ionic Liquid Composites , 2010, Advanced materials.

[18]  Shin-Tson Wu,et al.  Optical wave propagation in a cholesteric liquid crystal using the finite element method , 2003 .

[19]  Wei-Yu Lee,et al.  Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host , 2004 .

[20]  Zonghai Hu,et al.  Electric-field-driven accumulation and alignment of CdSe and CdTe nanorods in nanoscale devices. , 2006, Nano letters.

[21]  E. Marzbanrad,et al.  Sorting ZnO particles of different shapes with low frequency AC electric fields , 2011 .

[22]  Haifeng Yu,et al.  Low voltage and hysteresis-free blue phase liquid crystal dispersed by ferroelectric nanoparticles , 2012 .

[23]  H. Cao,et al.  Characteristics of selective reflection of chiral nematic liquid crystalline gels with a nonuniform pitch distribution , 2007 .

[24]  H. Cao,et al.  Chiral polymer networks with a broad reflection band achieved with varying temperature , 2010 .